Обработки и изменения информации в. Обработка информации. Основы информатики. Что подразумевают под собой технические средства

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Основные программы обработки информации в офисе

Введение

1. Текстовые редакторы

2. Графические редакторы

3. Электронные таблицы

5. Интегрированные пакеты

6. Программы Windows

Введение

Использование компьютеров вместо людей при принятии решений имеет множество преимуществ.

Рассмотрим лишь несколько наиболее очевидных:

компьютеры обрабатывают данные с очень высокой скоростью. Предел быстродействия - 10^9 операций в секунду.

с помощью компьютеров можно решать задачи, слишком сложные для человеческого разума.

огромные объемы памяти позволяют хранить большие количества информации с последующей ее обработкой.

компьютеры не придают эмоциональной окраски обрабатываемым данным. Они объективно учитывают все введенные факторы и ограничения, и строят на их основе неискаженную эмоциями модель.

Целью данной работы является изучение офисных программ.

Офисные программы - это программы, которые наиболее часто используются в офисе. В общем, строгого разделения программ на офисные и неофисные нет, однако, учитывая тот факт, что практически весь мир пользуется пакетом Microsoft Office от корпорации Microsoft именно этот комплект программ определяет, что такое офисный набор.

В теоретической части работы были изучены программы, наиболее часто используемые в офисе - Word, Exсel, Outlook. В практической части решена задача с использованием Приложения Microsoft Excel.

При написании данной работы использовался компьютер с процессором Intel Soc-478 Celeron-2600/400, монитором Samsung Sync Master 763 MB и оперативной памятью 256 Мбайт.

Три основные программы, считающиеся, безусловно, офисными, - это текстовый редактор, электронные таблицы и органайзер. Текстовый редактор используется для создания простейших текстов (записка, письмо, договор, контракт), различных бланков и документов самой разнообразной степени сложности. Электронные таблицы применяются для ведения и хранения структурированных данных (таблица), в которых необходимо производить различные расчёты (например, бухгалтерия, бизнес - план). Органайзер - многофункциональная система, в которой, как правило, ведётся база ваших контактов (людей и предприятий), записываются различные дела и задачи, создаются всевозможные напоминания

В стандартный офисный пакет от корпорации Microsoft также входят ещё две программы: пакет для создания демонстраций и презентаций PowerPoint, а также система для создания и ведения баз данных Access. Бывают и другие программы, которые можно отнести к офисным. Различные переводчики, бухгалтерии, системы распознания текста, программы ведения документооборота и разнообразные справочники можно считать офисными. Однако к офисным программам не принято относить специализированные пакеты, которые не используются обычными офисными работниками, например различные средства администрирования сети, системы для профессиональной работы с графикой и так далее.

Но не только Microsoft выпускает офисные программы. Раньше существовал пакет Русский офис, куда входили текстовый редактор Лексикон, переводчик Сократ, система ведения личных финансов Декарт и файловый менеджер ДИСКо Командир, но этот пакет даже в России не был особо популярен. Кроме того, существуют десятки и сотни фирм и тысячи независимых разработчиков, которые создают различные полезные офисные программы.

1. Текстовые редакторы

Невозможно встретить хотя бы один компьютер, на котором не был установлен текстовый редактор. С помощью таких программ можно набирать текст, редактировать и визуально оформлять. На сегодняшний день существует огромное количество таких утилит, которые различаются функциональными возможностями.

Это приложение является самым простым и удобным текстовым редактором для ОС Windows. В основном его используют для записи небольших фраз, заметок и другого. Большинство специалистов применяют "Блокнот" для хранения различных кодов, при этом оставляя их в оригинальном виде, поскольку современные и более продвинутые редакторы могут визуально изменять текст, что приводит к потере фрагментов записи.

Кроме того, в "Блокнот" можно переносить пароли, ссылки и различные команды. Этот редактор устанавливается вместе со всем комплектом операционной системы и является абсолютно бесплатным. В операционной системе Linux эта утилита называется gedit. По функциональным возможностям он ничем не уступает приложению для Windows. офисный программа word windows

Достоинством таких программ в том, что они занимает очень мало места и просты в использовании. Эти утилиты отлично подходят для записи простой информации. Недостатком можно считать отсутствие возможности оформлять текст.

Эта версия блокнота отлично подходит для опытных пользователей. Редактор обладает большим набором функций, но при этом является простым блокнотом. Скачать приложение рекомендуется с официального ресурса. Утилита распространяется на бесплатной основе и обладает русифицированным интерфейсом.

Еще одна простая программа для редактирования текстов. Она устанавливается вместе с операционной системой Windows. Это приложение является чем-то средним между MS Word и обычным блокнотом. Это значит, что WordPad обладает простой основой, но содержит некоторые функции от MS Word. Такое сочетание привлекает большое количество пользователей, которым требуется просто набрать текст и немного его обработать. Кроме того, это приложение поможет сэкономить средства на покупку MS Word. Однако, проверка орфографии довольно плоха.

Эта утилита специально создавалась для ОС Linux, который пришел на смену OpenOfficeOrg. Однако, он и сейчас используется. После этого была выпущена версия для ОС Windows. Это приложение очень напоминает MS Word 2003, но с очень плохой проверкой правописания.

Для домашнего использования эта программа подходит как нельзя лучше, причем LibreOffice распространяется бесплатно. Она сможет сохранить и распечатать оформленный текст. Для операционной системы Winows ее можно скачать с официального ресурса, а в Linux она инсталлирована по умолчанию.

Эта программа уже длительное время пользуется огромной популярностью. Ее можно назвать флагманом среди текстовых редакторов. Word соединяет в себе приятный интерфейс и огромное количество функций для обработки текстов. Программа способна работать на всех операционных системах Windows.

В мире нет ни одного компьютера, на котором не была бы установлена эта программа. Она просто необходима для тех, кто постоянно занимается редактированием текстов. Кроме того, проверка орфографии в этом приложении на высоте, чего нет в других редакторах.

Google Документы

Эта программа является онлайн-редактором текста. Это самый современный вид подобных программ. Эти приложения предоставляют возможность набирать тексты на удаленном сервере в глобальной сети.

Из достоинств сервиса можно отметить моментальное сохранение написанного текста в облачном хранилище, что дает возможность открывать его одновременно нескольким пользователям.

Кроме того, просмотреть его можно со всех устройств, которые имеют подключение к интернету. Это позволяет не бояться потери данных и отключения интернета, поскольку документ всегда находится в сети. Самым популярным подобным редактором является GoogleДиск.

Необходимо зарегистрироваться на облачном диске, а после этого можно создавать документы. Созданные документы не обладают красивым дизайном, но она и не нужна, поскольку это будет излишне нагружать интернет-канал. Назначение таких сервисов - набор текстов.

Орфография проверяется web-обозревателем. Это не самый лучший вариант, но и не худший. К достоинствам приложения можно отнести бесплатно использование. Кроме того, есть возможность сохранять документ на компьютере, если это необходимо.

Это список лучших текстовых редакторов на любой вкус и с разными функциональными возможностями, среди которых каждый пользователь найдет себе подходящий.

2. Графические редакторы

Графические редакторы - программы для работы с графикой. Такие программы позволяют самому создавать, редактировать, добавлять эффекты и проделывать всяческие другие манипуляции с изображениями. Самый популярный текстовый редактор это профессиональная программа Adobe Photoshop. В Windows также есть встроенный редактор Paint, популярный среди обычных пользователей.

Существует три основных вида программ графического редактирования:

· растровые;

· векторные;

· гибридные.

Растровые графические редакторы предназначены для создания и обработки изображения в виде точек или сетки пикселей (матрица) на отображающих устройствах. Такие программы широко применяются при создании изображений, которые отправляются в типографическую печать, публикаций в интернете.

Использование такого типа редактора позволяет создавать рисунок на мониторе компьютера, сохранять в форматах JPEG, TIFE. При сохранении такой графики, за счет алгоритма сжатия, снижается качество изображения. При использовании формата PNG, GIF, которые поддерживают функцию хорошего сжатия без потерь, качество изображения не ухудшается.

Типичным примером растрового графического редактора является программа Adobe Photoshop.

Векторный графический редактор дает возможность создать или отредактировать объект, состоящий из геометрических элементов (точки, линии, многоугольники) прямо на экране и сохранять в векторных редакторах (CDR, AI, EPS).

Векторная графика противоположность растровой.

Гибридные графические редакторы предназначены для работы со сканированными документами.

Такой вид графического редактора включает в себя часть растрового и векторных программ. Ярким примером гибридной программы можно считать AutoCAD, RasterDesk.

Возможности, которые предлагают графические редакторы, неограниченны.

3. Электронные таблицы

Электронные таблицы позволяют выполнять вычисления, как простые так и очень сложные, анализировать и визуализировать данные, составлять бухгалтерские отчеты и не только. Неоспоримым лидером в данной сфере является программа Microsoft Excel.

Основное применение электронных таблиц - бухгалтерские и коммерческие расчеты, организация баз данных, представление табличных данных в виде графических диаграмм.

4. Системы управления базами данных

Система управления базами данных предоставляет вам возможность контролировать задание структуры и описание своих данных, работу с ними и организацию коллективного пользования этой информацией. СУБД также существенно увеличивает возможности и облегчает каталогизацию и ведение больших объемов хранящейся в многочисленных таблицах информации. СУБД включает в себя три основных типа функций: определение (задание структуры и описание) данных, обработка данных и управление данными.

Все эти функциональные возможности в полной мере реализованы в Microsoft Access.

Перечислим основные функциональные возможности:

Определение данных (Data definition) -- вы можете определить, какая именно информация будет храниться в вашей базе данных, задать структуру данных и их тип (например, количество цифр или символов), а также указать, как эти данные связаны между собой. В некоторых случаях вы можете также задать форматы и критерии проверки данных.

Обработка данных (Data manipulation) -- данные можно обрабатывать самыми различными способами. Можно выбирать любые поля, фильтровать и сортировать данные. Можно объединять данные с другой связанной с ними информацией и вычислять итоговые значения.

Управление данными (Data control) -- вы можете указать, кому разрешено знакомиться с данными, корректировать их или добавлять

Кратко остановимся на конкретных программных продуктах, относящихся к классу СУБД. На самом общем уровне все СУБД можно разделить:

на профессиональные, или промышленные;

Персональные (настольные).

Профессиональные (промышленные) СУБД представляют собой программную основу для разработки автоматизированных систем управления крупными экономическими объектами. На их базе создаются комплексы управления и обработки информации крупных предприятий, банков или даже целых отраслей. Первостепенными условиями, которым должны удовлетворять профессиональные СУБД, являются:

Возможность организации совместной параллельной работы большого количества пользователей;

Масштабируемость, то есть возможность роста системы пропорционально расширению управляемого объекта;

Переносимость на различные аппаратные и программные платформы; устойчивость по отношению к сбоям различного рода, в том числе наличие многоуровневой системы резервирования хранимой информации;

Обеспечение безопасности хранимых данных и развитой структурированной системы доступа к ним.

Промышленные СУБД к настоящему моменту имеют уже достаточно богатую историю развития. В частности, можно отметить, что в конце 70-х -- начале 80-х годов в автоматизированных системах, построенных на базе больших вычислительных машин, активно использовалась СУБД Adabas. В настоящее время характерными представителями профессиональных СУБД являются такие программные продукты, как Oracle, DB2, Sybase, Informix. Ingres, Progress.

5. Интегрированные пакеты

Интегрированные пакеты-представляют собой набор нескольких программных продуктов, объединенных в единый удобный инструмент. Наиболее развитые из них включают в себя текстовый редактор, органайзер, электронную таблицу, СУБД, средства поддержки электронной почты, программу создания презентационной графики.

Результаты, полученные отдельными подпрограммами, могут быть объединены в окончательный документ, содержащий табличный, графический и текстовый материал.

Интегрированные пакеты, как правило, содержат некоторое ядро, обеспечивающее возможность тесного взаимодействия между составляющими.

Пример: интегрированный пакет для написания книг, содержащих иллюстрации.

Он содержит:

текстовый редактор;

орфографический корректор на 80000 слов (программу обнаружения орфографических ошибок);

программу слияния текстов;

программу формирования оглавлений и составления указателей;

автоматический поиск и замену слов и фраз;

средства телекоммуникации;

электронную таблицу;

систему управления базами данных;

модули графического оформления;

графический редактор;

возможность печати сотнями разных шрифтов и т.д.

Наиболее известные интегрированные пакеты:

Microsoft Office. В этот мощный профессиональный пакет вошли такие необходимые программы, как текстовый редактор WinWord , электронная таблица Excel, программа создания презентацийPowerPoint, СУБД Access, средство поддержки электронной почты Mail. Мало того, все части этого пакета составляют единое целое, и даже внешне все программы выглядят единообразно, что облегчает как их освоение, так и ежедневное использование.

Microsoft Works - это очень простой и удобный пакет, объединяющий в себе текстовый редактор, электронные таблицы и базы данных, а также телекоммуникационные средства для соединения с другими компьютерами по телефонным линиям. Пакет ориентирован на людей, не имеющих времени осваивать сложные продукты, на начинающих пользователей, а также на домашних пользователей.

6. Программы Windows

Windows - Проводник. Назначение, возможности, интерфейс и приемы работы

Проводник (Windows Explorer) в среде Windows 98 - программа (приложение), с помощью которой пользователь может отыскать любой объект файловой системы (папку или файл) и произвести с ним необходимые действия.

С помощью Проводника можно запускать приложения, открывать документы, перемещать или копировать файлы и папки, форматировать дискеты, просматривать Web-страницы в Интернете и др. Интерфейс Проводника сделан предельно понятным для пользователя. Внешний вид окна Проводника может изменяться, но его функции при этом практически не меняются.

Основное рабочее поле Проводника может быть разделено на две-три панели. Правая панель отображает содержимое папки, адрес которой указан в адресной строке. Каждый значок на правой панели представляет собой папку, щелчок по которой откроет ее содержимое. Средняя панель играет вспомогательную роль, создавая интерфейс Internet Explorer. В левой панели отображается иерархическая структура подчиненности папок.

В верхней части любого окна Проводника находятся Управляющее меню и панели инструментов:

Панель с кнопками, предназначенными для быстрого выполнения наиболее употребляемых команд;

Адресная строка, в которой указывается имя активной (текущей) папки или адреса Интернет;

Операционная система Windows 98 имеет следующие особенности.

Основные объекты и действия представлены в виде наглядных экранных форм. Такой вид взаимодействия ПК с пользователем называется графическим пользовательским интерфейсом (Graphics User Interface). В этом случае управление различными объектами осуществляется в основном с помощью манипулятора типа "мышь", а каждой выполняемой программе отводится на экране монитора окно, которое может занимать часть экрана или весь экран. Очень часто такой интерфейс называется многооконным, поскольку позволяет одновременно работать с несколькими программами, каждой из которых отведено свое окно на экране монитора.

Широкие и разнообразные сервисные возможности:

создание ярлыков объектов (папок, файлов, устройств);

использование специальных программ-мастеров;

использование программ поиска и быстрого просмотра документов.

Удобство работы с документами:

создание документов с помощью шаблонов;

перенос данных из одного документа в другой;

удаление в Корзину документов или целых папок.

Широкое сетевые возможности и средства работы с Интернетом.

Усовершенствованная справочная система и широкие возможности по настройке самой операционной системы.

ОС Windows 98 по сравнению с ОС Windows 95 также имеет ряд особенностей.

Еще больше ориентирована на работу в сети Интернет:

открытые папки могут выглядеть как веб-страницы;

объекты могут выделяться наведением на них указателя мыши, а открываться одним щелчком;

дополнительные кнопки Назад и Вперед, имеющиеся в окнах папок и программы Проводник, существенно облегчают работу с ними;

в состав ОС включен комплект программ Internet Explorer версии 4.0 (в последних версиях Windows 98, например Windows 98 SE, - Internet Explorer версии 5.0);

если открытая папка представлена как веб-страница, то выделение объекта приводит к отображению его основных свойств;

Проведена модификация некоторых стандартных программ, и к ним добавлена графическая программа Imaging;

программа Блокнот (Notepad) стала обеспечивать смену шрифта;

расширены функциональные возможности Калькулятора (Calculator)$

текстовый редактор WordPad может работать с документами в формате Word 97;

Расширен набор программ, предназначенных для диагностики и обслуживания системы:

Планировщик заданий (Task Scheduler) обеспечивает автоматический запуск программ в соответствии с ранее составленным расписанием;

Мастер обслуживания (Maintenance Wizard) помогает составить расписание.

Улучшена процедура установки системы:

количество этапов установки сокращено с 12 до 5;

программа установки стала более наглядной.

Более совершенной стала система помощи:

Справочная система переписана на языке HTML и способна самостоятельно обращаться к веб-ресурсам;

Основные системные объекты и окна имеют всплывающие подсказки, информирующие об их назначении, и др.

Конкретный выбор операционной системы определяется совокупностью предоставляемых функций и конкретными требованиями к рабочему месту.

Функции операционных систем могут включать следующие:

Возможность поддерживать функционирование локальной компьютерной сети без специального программного обеспечения;

Обеспечение доступа к основным службам Интернета средствам, интегрированным в состав операционной системы;

Возможность создания системными средствами сервера Интернета, его обслуживание и управление, в том числе дистанционное посредством удаленного соединения;

Наличие средств защиты данных от несанкционированного доступа, просмотра и внесения изменений;

Возможность оформления рабочей среды операционной системы, в том числе и средствами, относящимися к категории мультимедиа;

Возможность обеспечения комфортной поочередной работы различных пользователей на одном ПК с сохранением персональных настроек рабочей среды каждого из них;

Возможность автоматического исполнения операций обслуживания компьютера и ОС по заданному расписанию или под управлением удаленного сервера;

Возможность работы с компьютером для лиц, имеющих физические недостатки, связанные с органами зрения, слуха и другими.

Кроме выше перечисленного, современные ОС могут включать минимальный набор прикладного программного обеспечения, которое можно использовать для исполнения простейших практических задач:

Чтение, редактирование и печать текстовых документов;

Создание и редактирование простейших рисунков;

Выполнение арифметических и математических расчетов;

Ведение дневников и служебных блокнотов;

Создание, передача и прием сообщений электроннолй почты;

Создание и редактирование факсимильных сообщений;

Воспроизведение и редактирование звукозаписи;

Воспроизведение видеозаписи;

Разработка и воспроизведение комплексных электронных документов, включающих текст, графику, звукозапись и видеозапись.

Эти возможности ОС не исчерпываются. По мере развития аппаратных средств вычислительной техники и средств связи функции ОС непрерывно расширяются, а средства их исполнения совершенствуются.

Виды интерфейсов пользователя.

Интерфейс командной строки. По реализации интерфейса пользователя различают неграфические и графические операционные системы. Неграфические операционные системы реализуют интерфейс командной строки. Основным устройством управления в данном случае является клавиатура. Управляющие команды вводят в поле командной строки, где их можно и редактировать. Исполнение команды начинается после ее утверждения, например, нажатием клавиши INTER. Для компьютеров платформы IBM PC интерфейс командной строки обеспечивается семейством операционных систем под общим названием MS-DOS (версии от MS-DOS 1.0 до MS-DOS 6.2)

Графический интерфейс. Графические операционные системы реализуют более сложный тип интерфейса, в котором в качестве органа управления кроме клавиатуры может использоваться мышь или иное устройство позиционирования. Работа с графической операционной системой основана на взаимодействии активных и пассивных экранных элементов управления.

Активные и пассивные элементы управления. В качестве активного элемента управления выступает указатель мыши - графический объект, перемещение которого на экране синхронизировано с перемещением мыши.

В качестве пассивных элементов управления выступают графические элементы управления приложений (экранные кнопки, значки, переключатели, флажки, раскрывающиеся списки, строки меню и многие другие).

Характер между активными и пассивными элементами управления выбирает сам пользователь. В его распоряжении приемы наведения указателя мыши на элемент управления, щелчки кнопками мыши и другие средства.

В ОС Windows приложения, папки, документы рассматриваются как объекты, поэтому пользователю предоставляется возможность так называемого объектно-ориентированного подхода.

Все объекты имеют определенные свойства, и над ними могут проводиться определенные операции. Например, документы имеют определенный объем, их можно копировать, перемещать, переименовывать. Окна имеют размеры, их можно изменять. Папки можно открыть, копировать, переносить, переименовывать. Хотя каждый из этих объектов имеет разные свойства, с ними можно производить различные действия, технология работы с объектами и интерфейс универсальны. Это позволяет пользователю достичь единообразия при работе с разными объектами.

Ознакомиться со свойствами любого объекта, а также выполнить над ним разрешенные для него операции можно, вызвав контекстное меню.

Размещено на Allbest.ru

...

Подобные документы

    Рассмотрение областей применения компьютерной графики. Изучение основ получения различных изображений (рисунков, чертежей, мультипликации) на компьютере. Ознакомление с особенностями растровой и векторной графики. Обзор программ фрактальной графики.

    реферат , добавлен 15.04.2015

    Операционная система MS-DOS: история и характеристика. Обзор стандартных программ операционной системы Windows. Способы запуска программ. Служебные приложения Windows и их назначение: диспетчер задач, проверка, очистка, дефрагментация и архивация диска.

    реферат , добавлен 06.01.2015

    Правовые основы защиты информации на предприятии. Анализ среды пользователей. Автоматизированная система предприятия. Краткие сведения об операционной системе Windows XP. Классификация троянских программ. Способы защиты операционной системы Windows XP.

    дипломная работа , добавлен 14.07.2013

    Общая характеристика предприятия, особенности сбора первичной информации. Системные требования операционной системы Windows XP Home и Professional editions. Преимущества, недостатки Wi-Fi. Беспроводная локальная сеть в главном офисе ТОО "Информстройтехс".

    отчет по практике , добавлен 03.02.2012

    Понятие и назначение электронных таблиц. Сравнительная характеристика редакторов электронных таблиц Microsoft Excel, OpenOffice.org Calc, Gnumeric. Требования к оформлению электронных таблиц. Методика создания электронных таблиц в MS Word и MS Excel.

    контрольная работа , добавлен 07.01.2015

    Основы работы операционной системы Windows XP. Работа в текстовом процессоре Microsoft Word: ввода, редактирования и форматирования текста, автоматизации разработки документа, создания графических объектов, создания комплексного текстового документа.

    курсовая работа , добавлен 25.04.2009

    Изучение процесса создания новой версии Windows Vista. Исследование особенностей установки и интерфейса операционной системы. Характеристика требований к аппаратному обеспечению компьютера. Анализ основных средств навигации и работы в Windows Vista.

    реферат , добавлен 25.11.2014

    Изучение теоретических основ работы в Word, процесса создания и редактирования таблиц, преобразования текста в таблицу, объединения и разделения ячеек. Характеристика ввода формул с клавиатуры в программе Excel, особенностей их перемещения и копирования.

    курсовая работа , добавлен 02.05.2012

    Разработка программы для операционной системы Windows с использованием VisualC++ (6.0, .NET). Рассмотрение основ программного моделирования работы прибора (электрического чайника). Правила создания классов устройства и его графического интерфейса.

    курсовая работа , добавлен 03.06.2014

    Модель процесса обработки информации на персональном компьютере и функции объектов, участвующих в этом процессе – операционной системы, прикладных программ, пользователя. Интерфейсные элементы и практические навыки работы с мышью, окнами, программами.

Технологии обработки данных информации

ИТ широко используются в самых различных сферах деятельности современного общества и, в первую очередь, - в информационной сфере Они позволяют оптимизировать разнообразные ИП, начиная от подготовки и издания печатной продукции и кончая информационным моделированием и прогнозированием глобальных процессов развития при роды и общества. При этом ИТ в любых предметных областях наиболее часто используются для обработки данных (информации).

Обработка – понятие широкое, часто включает в себя несколько взаимосвязанных более мелких операций. К обработке относят операции проведения расчётов, выборки, поиска, объединения, слияния, сортировки, фильтрации и др.

Важно помнить, что обработка – это систематическое выполнение операций над данными (информацией, знаниями); процесс преобразования, вычисления, анализа и синтеза любых форм данных, информации и знаний путём систематического выполнения операций над ними.

Обычно отдельно выделяют операции обработки данных, информации и знаний.

Технология обработки информации зависит от характера решаемых задач, используемых средств вычислительной техники, числа пользователей, систем контроля за процессом обработки информации и т. д. При этом она используется при решении хорошо структурированных задач с имеющимися входными данными и алгоритмами, а также стандартными процедурами их обработки.

Технологический процесс обработки информации может включать следующие операции (действия): генерация, сбор, регистрация, анализ, собственно обработка, накопление, поиск данных, информации, знаний и др.

Обработка информации происходит в процессе реализации технологического процесса, определяемого предметной областью. Рассмотримосновные операции (действия) технологического процесса обработки информации.

1) Сбор данных, информации, знаний. Эта операция представляет собой процесс регистрации, фиксации, записи детальной информации (данных, знаний) о событиях, объектах (реальных и абстрактных), связях, признаках и соответствующих действиях. При этом иногда выделяютв отдельные операции «сбор данных и информации» и «сбор знаний».

Сбор знаний это получение информации о предметной области от специалистов (экспертов) и представления ее в форме, необходимой для записи в базу знаний.



Различают механизированный, автоматизированный и автоматический способы сбора и регистрации информации и данных. Вариантом технологии автоматического сбора информации является RFID (от англ. radio frequency identification - радиочастотная идентификация) – специальный микрочип размером в несколько сантиметров, встраиваемый в какой-либо объект. С помощью имеющейся в нём антенны RFID обеспечивает обмен информацией с внешними устройствами (компьютером и др.). Он позволяет проводить диагностику оборудования, выявлять нуждающиеся в замене комплектующие и т. д. Внедрение этой технологии обеспечит высокоэффективные методы учёта и сервисного обслуживания различных изделий и объектов.

2) Обработка данных, информации, знаний. Обработка часто включает в себя несколько взаимосвязанных более мелких операций. К обработке можно отнести такие операции, как: проведение расчётов, выборка, поиск, объединение, слияние, сортировка, фильтрация и т. д. Обработка представляет собой систематическое выполнение операций над данными, процесс преобразования, вычисления, анализа и синтеза любых форм данных, информации и знаний посредством систематического выполнения операций над ними.

При определении такой операции, как обработка, выделяют понятия «обработка данных», «обработка информации» и «обработка знаний». При этом отмечают обработку текстовой, графической, мультимедийной и иной информации.

Обработка текстов является одним из средств электронного офиса.

Обычно наиболее трудоёмким процессом работы с электронным текстом является его ввод в ЭВМ. За ним следуют этапы подготовки (в том числе редактирование) текста, его оформление, сохранение и вывод. Этот вид обработки предоставляет пользователям различный инструментарий, повышающий эффективность и производительность их деятельности. При этом существуют программы, распознающие отсканированный текст, что существенно облегчает работу с подобными данными.

Обработка изображений получила широкое распространение с развитием электронной техники и технологий. При обработке изображений требуются высокие скорости, большие объёмы памяти, специализированное техническое и программное обеспечение. При этом существуют средства сканирования изображений, существенно облегчающие их ввод и обработку в ЭВМ. В компьютерных технологиях используют векторную, растровую и фрактальную графику. Изображения имеют различный вид, могут быть двух- и трёхмерными, с выделенными контурами и т. д.

Обработка таблиц осуществляется специальными прикладными программами, дополненными макросами, диаграммами, аналитическими и иными возможностями. Работа с электронной таблицей позволяет вводить и обновлять данные, команды, формулы, определять взаимосвязь и взаимозависимость между клетками (ячейками), таблицами, страницами, файлами с таблицами и БД, данными в виде функций, аргументами которых являются записи в ячейках.

Обработка данных может осуществляться в интерактивном и фоновом режимах. Основное развитие эта технология получила в СУБД.

Общеизвестны следующие способы обработки данных: централизованная, децентрализованная, распределённая и интегрированная.

Централизованная обработка данных в ЭВМ в основном представляла собой пакетную обработку информации. При этом пользователь доставлял в вычислительный центр (далее –ВЦ) свою исходную информацию, а затем получал результаты обработки в виде документов и (или) носителей. Особенностью такого способа являются сложность и трудоёмкость налаживания быстрой, бесперебойной работы, большая загруженность ВЦ информацией (большой объём), регламентация времени выполнения операций, организация безопасности системы от возможного несанкционированного доступа. Поскольку сложность решаемых задач обычно обратно пропорционально их количеству, то централизованная обработка данных зачастую приводила к неэффективному использованию вычислительных ресурсов центральной ЭВМ, ограничивала доступ пользователей к её ресурсам, но требовала значительных материальных затрат на создание и эксплуатацию систем обработки данных.

Принцип централизованной обработки данных ранее не овечал высоким требованиям к надёжности процесса обработки, затруднял развитие систем, не мог обеспечить необходимые временные параметры при диалоговой обработке данных в многопользовательском режиме. А даже кратковременный выход из строя центральной ЭВМ мог привести к серьёзным негативным последствиям. Ныне эта технология получила новое развитие в создаваемых высоконадёжных и эффективных центров обработки данных (далее -ЦОД).

Децентрализованная обработка данных связана с появлением ПЭВМ (малых ЭВМ, микроЭВМ), позволивших автоматизировать конкретные рабочие места и повлекших за собой возникновение распределённой обработки данных.

Распределённая обработка данных - это обработка данных, выполняемая на независимых, но связанных между собой компьютерах, представляющих распределённую систему, т. е. в компьютерных информационных сетях. Она реализуется двумя путями. Первый предполагает установку ЭВМ в каждом узле сети (или на каждом уровне системы), при этом обработка данных осуществляется одной или несколькими ЭВМ в зависимости от реальных возможностей системы и её потребностей на текущий момент времени.

Второй путь предполагает размещение большого числа различных процессоров внутри одной системы. Распределённый способ основывается на комплексе специализированных процессоров – каждая ЭВМ используется для решения определённых задач, или задач своего уровня. Он применяется там, где необходима сеть обработки данных (филиалы, отделения и т. д.), например, в системах обработки банковской и финансовой информации.

Преимущества такого способа заключаются в возможности: обрабатывать в заданные сроки любой объём данных с высокой степенью надёжности (при отказе одного технического средства можно моментально заменить его на другой); сократить время и затраты на передачу данных; повысить гибкость систем; упростить разработку и эксплуатацию ПО и т. д.

Интегрированный способ обработки информации предусматривает создание информационной модели управляемого объекта – РБД. Он обеспечивает максимальное удобство для пользователя. С одной стороны, БД предусматривают коллективное пользование и централизованное управление. С другой стороны, объём информации, разнообразие решаемых задач требуют распределения БД. Технология интегрированной обработки информации позволяет улучшить качество, достоверность и скорость обработки, так как обработка производится на основе единого информационного массива, однократно введенного в ЭВМ.

Особенность этого способа заключается в отделении технологически и по времени процедуры обработки от процедур сбора, подготовки и ввода данных.

В информационных сетях обработка информации осуществляется различным образом: в пакетном и регламентном режимах; режимах реального масштаба времени, разделения времени и телеобработки, а также в запросном, диалоговом, интерактивном; однопрограммном и многопрограммном (мультиобработка) режимах.

Обработка данных в пакетном режиме означает, что каждая порция не срочно передаваемой информации (как правило, в больших объёмах) обрабатывается без вмешательства извне – формирование отчётных данных (сводок и т. п.). При его использовании пользователь не имеет непосредственного общения с ЭВМ. Как правило, это задачи неоперативного характера, с долговременным сроком действия результатов решения. При этом сбор, регистрация, ввод и обработка информации не совпадают по времени. Сначала пользователь собирает информацию и формирует её в пакеты в соответствии с видом задач или другим признаком. По окончании приёма информации производится её ввод и обработка. В результате происходит задержка обработки.

Этот режим порой называют фоновым. Он реализуется, когда свободны ресурсы вычислительных систем и обработка может прерваться более срочными и приоритетными процессами и сообщениями, по окончании которых она возобновляется автоматически. Режим используется, как правило, при централизованном способе обработки информации.

В режиме разделения времени в одном компьютере осуществляется чередование во времени процессов решения разных задач. В этом режиме ресурсы компьютера (системы) для оптимального их использования предоставляются сразу группе пользователей циклично, на короткие интервалы времени. При этом система выделяет свои ресурсы группе пользователей поочерёдно. Поскольку ЭВМ быстро обслуживает каждого из группы пользователей, создаётся впечатление одновременной их работы. Такая возможность достигается путём использования специального ПО.

Режим реального времени – это технология. обеспечивающая реакцию управления объектом, соответствующую динамике его производственных процессов. Он означает способность вычислительной системы взаимодействовать с контролируемыми или управляемыми процессами в темпе протекания этих процессов. Время реакции может измеряться секундами, минутами, часами и должно удовлетворять темпу контролируемого процесса или требованиям пользователей и иметь минимальную задержку.

В системах реального времени обработка данных по одному сообщению (запросу) завершается до появления другого. Как правило, такой режим используется при децентрализованной и распределённой обработке данных и применяется для объектов с динамическими процессами. Например, обслуживание клиентов в банке по любому набору услуг должно учитывать допустимое время ожидания клиента, одновременное обслуживание нескольких клиентов и укладываться в заданный интервал времени (время реакции системы).

Интерактивный режим предполагает возможность двустороннего взаимодействия пользователя с системой, т. е. пользователь может воздействовать на процесс обработки данных. Интерактивная работа осуществляется в режиме реального времени и обычно используется для организации диалога (диалоговый режим).

Диалоговый (запросный) режим характеризуется возможностью пользователя в процессе работы с ЭВМ непосредственно взаимодействовать с ней. Программы обработки данных могут находиться в памяти компьютера постоянно (ЭВМ доступна в любое время) или в течение определённого промежутка времени (только когда ЭВМ доступна пользователю).

Диалоговое взаимодействие пользователя с компьютером может быть многоаспектным и определяться такими факторами, как: язык общения; активная или пассивная роль пользователя; кто является инициатором диалога (пользователь или ЭВМ); время ответа; структура диалога и т. д. Если инициатором диалога является пользователь, то он должен обладать знаниями и навыками работы с процедурами, форматами данных и т. д.. Если инициатор – ЭВМ, то она сама на каждом шаге сообщает, что нужно делать пользователю – метод «выбора меню». Данный метод обеспечивает поддержку действий пользователя и предписывает их последовательность. При этом от пользователя требуется меньшая подготовленность.

Диалоговый режим требует определённого уровня технической оснащённости пользователя: наличие терминала или ПЭВМ, связанных телекоммуникациями с центральной ЭВМ. Возможность работы в диалоговом режиме может быть ограничена во времени началом и концом работы, а может быть неограниченной. Режим используется для доступа к информации, вычислительным или программным ресурсам.

Иногда различают диалоговый и запросный режимы. Под запросным режимом понимается одноразовое обращение к системе, после которого она выдаёт ответ и отключается (например, справочная система), а под диалоговым – режим, при котором система после запроса выдаёт и ждёт дальнейших действий пользователя.

Режим телеобработки позволяет удалённому пользователю взаимодействовать с ЭВМ (его порой называют терминальным).

Однопрограммный или многопрограммный режимы характеризуют возможность системы работать одновременно по одной или нескольким программам.

Регламентный режим ориентирован на определённую во времени последовательность выполнения отдельных задач пользователя. Например, регулярное (ежемесячное, квартальное и т.п.)т получение результатных сводок и отчётов, расчёт ведомостей начисления зарплаты к определённым датам и т. д. При этом выделяют регулярные, специальные, сравнительные, чрезвычайные и иные виды отчётов. Регулярные отчёты обычно создаются по запросам администрации или в случае незапланированных ситуаций. Названные отчёты могут иметь форму суммирующих, сравнительных и чрезвычайных отчётов. В суммирующих отчётах данные объединяют в отдельные группы, сортируют, представляют в виде промежуточных и окончательных итогов по отдельным полям. Сравнительные отчёты включают данные, полученные из разных источников или квалифицированные по различным признакам и используемые для целей сравнения. Чрезвычайные отчёты содержат данные исключительного (чрезвычайного) характера.

Обработка информации подразумевает переработку информации определённого типа (текстовой, звуковой, графической и др.) и преобразования её в информацию другого определённого типа. Так, например, принято различать обработку текстовой информации, изображения (графики, фото, видео и мультипликация) и звуковой информации (речь, музыка, другие звуковые сигналы). Использование новейших технологий обеспечивает их комплексное представление. При этом человеческое мышление может рассматриваться как процесс обработки информации.

ИТ обработки информации предназначена для решения хорошо структурированных задач, по которым имеются необходимые входные данные, известны алгоритмы и другие стандартные процедуры их обработки. Эта технология применяется в целях автоматизации рутинных постоянно повторяющихся операций, что позволяет повышать производиетельность труда, освобождая исполнителей от рутинных операций, а порой и сокращая численность работников. При этом решаются задачи: обработки данных; создания периодических отчётов о состоянии дел; связанные с получением ответов на различные текущие запросы и оформлением их в виде документов и отчётов. При этом применяя. такие ИТ, как: сбор и регистрация данных непосредственно в процессе производства в форме документа с использованием центральной ЭВМ или персональных компьютеров; обработка данных в режиме диалога; агрегирование (объединение) данных; использование электронных носителей информации (например, дисков).

Технологический процесс обработки информации с использованием ЭВМ включает следующие операции:

1) Приём и комплектование первичных документов (проверка полноты и качества их заполнения, комплектности и т. д.);

2) Подготовка электронного носителя и контроль его состояния;

3) Ввод данных в ЭВМ;

4) Контроль, результаты которого выдаются на внешние устройства (принтер, монитор и т. д.).

Существуют и другие подобные технологии, однако обратим внимание на ИТ (операции) контроля данных, редко рассматриваемые в специальной учебной литературе. В различных ситуациях приходится контролировать получаемые или распространяемые данные и информацию. С этой целью широко применяют ИТ. Различают визуальный и программный контроль, позволяющий отслеживать информацию на полноту ввода, нарушение структуры исходных данных, ошибки кодирования. Контроль не является самоцелью. При обнаружении ошибки производят:

· исправление вводимых данных, корректировку и их повторный ввод;

· запись входной информации в исходные массивы;

· сортировку (если в этом есть необходимость);

· обработку данных;

· повторный контроль и выдачу окончательной информации.

Рассмотрим более подробно обработку различных названных выше типов (видов) информации.

Человек выделяет в информации по крайней мере три компонента: смысл (семантика); оформление (синтаксис); личностная значимость (оценка, прагматика). Иными словами в любом сообщении можно выделить содержание, форму и наше отношение к сообщению.

Обработка (преобразование) информации - это процесс изменения формы представления информации или ее содержания.

Как правило, обработка информации – это закономерный, целенаправленный, планомерный процесс. Всегда существует цель обработки.

Процессы изменения формы представления информации часто сводятся к процессам ее кодирования и декодирования и проходят одновременно с процессами сбора и передачи информации.

Примеры изменения формы информации в результате обработки:

Специальное оборудование на метеостанции преобразует сигналы, полученные от метеозондов, в графики;

Данные анкет, полученные в результате психологических исследований, представляются в виде диаграмм;

При сканировании рисунок преобразуется в последовательность двоичных цифр.

Процесс изменения содержания информации включает в себя такие процедуры, как численные расчеты, редактирование, упорядочивание, обобщение, систематизация и т.д.

Примеры изменения содержания информации в результате обработки:

Результатом обработки данных нескольких метеостанций выступает прогноз погоды;

Анализ данных психологических исследований позволяет дать обобщенную психологическую характеристику группы "испытуемых" и рекомендации по улучшению психологического климата в этой группе;

Отсканированный текст первоначально представляется в виде рисунка (в соответствующем двоичном представлении). После его обработки программой оптического распознавания символов он преобразуется в "текстовые" коды.

Обрабатывать можно информацию любого вида и правила обработки могут быть самыми разнообразными. Общая схема преобразования информации приведена на рисунке 6.

Рисунок 6 Процесс преобразования информации.

Нам не всегда известно, как, по каким правилам входная информация преобразовывается в выходную. Систему, в которых наблюдателю доступны лишь входные и выходные величины, а структура и внутренние процессы неизвестны, называют черным ящиком (рисунок 7).

Рисунок 7 Схема преобразования информации по принципу "черного ящика"

Не будет преувеличением сказать, что любой познаваемый объект всегда первоначально выступает для наблюдателя как "черный ящик".

Но чаще всего без знания правил преобразования невозможно достичь цели, ради которой информация и обрабатывается. Если эти правила строго формализованы и имеется алгоритм их реализации, то можно построить устройство для автоматизированной обработки информации. Таким устройством в вычислительной технике является процессор (рисунок 8).

Рисунок 8 Схема обработки информации.

Обработка информации всегда происходит в некоторой внешней среде (обстановке), являющейся источником входной информации и потребителем выходной информации. Непосредственная переработка входной информации в выходную осуществляется процессором. При этом предполагается, что процессор располагает памятью.

Замечание. Обработка информации в общем случае приводит и к изменению состояния самого процессора.

Процесс обработки информации в рамках данной схемы чаще всего сводится к следующим процедурам:

Вычисление процессором значений выходных параметров как некоторой функции входных;

Накопление информации, т.е. изменение состояния памяти под воздействием входной информации;

Реализация причинной связи между входом и выходом процессора;

Взаимодействие процессора со средой, реакция на изменения обстановки;

Управление поведением всей системы в целом.

Обработка информации – это процесс, происходящий во времени.

В ряде случаев он должен подчиняться заданному темпу поступления входной информации и допустимому пределу задержки в выработке информации на выходе. В этом случае говорят об обработке информации в реальном масштабе времени. Примером является управление работой машин и устройств, в том числе компьютера.

В других случаях время рассматривается как дискретная цепочка мгновенно происходящих событий. При этом важна лишь их последовательность, а не значение разделяющих события временных промежутков. Такой подход применяется обычно при обработке информации в моделировании.

Наиболее простой формой обработки информации является последовательная обработка, производимая одним процессором, в котором в любой момент времени происходит не более одного события. При наличии в системе нескольких процессоров, работающих одновременно, говорят о параллельной обработке информации.

Обработка информации является центральной процедурой в управлении любой системой. Трактовка управления системой как процесса обработки информации является одним из основных принципов кибернетики.

Вычислительная техника в основном предназначена для автоматизированной обработки информации различного вида. К ней относятся: обработка запросов к базам данных, перекодирование информации, численные расчеты по формулам, аранжировка музыкальных произведений, синтез новых звуков, монтаж анимационных роликов и многое другое.

Обработка информации состоит в получении одних "информационных объектов" из других "информационных объектов" путем выполнения некоторых алгоритмов и является одной из основных операций, осуществляемых над информацией, и главным средством увеличения ее объема и разнообразия.

На самом верхнем уровне можно выделить числовую и нечисловую обработку. В указанные виды обработки вкладывается различная трактовка содержания понятия "данные". При числовой обработке используются такие объекты, как переменные, векторы, матрицы, многомерные массивы, константы и т.д. При нечисловой обработке объектами могут быть файлы, записи, поля, иерархии, сети, отношения и т.д. Другое отличие заключается в том, что при числовой обработке содержание данных не имеет большого значения, в то время как при нечисловой обработке нас интересуют непосредственные сведения об объектах, а не их совокупность в целом.

С точки зрения реализации на основе современных достижений вычислительной техники выделяют следующие виды обработки информации:

  • последовательная обработка, применяемая в традиционной фоннеймановской архитектуре ЭВМ, располагающей одним процессором;
  • параллельная обработка, применяемая при наличии нескольких процессоров в ЭВМ;
  • конвейерная обработка, связанная с использованием в архитектуре ЭВМ одних и тех же ресурсов для решения разных задач, причем если эти задачи тождественны, то это последовательный конвейер, если задачи одинаковые – векторный конвейер.

Принято относить существующие архитектуры ЭВМ с точки зрения обработки информации к одному из следующих классов .

Архитектуры с одиночным потоком команд и данных (SISD). К этому классу относятся традиционные фоннеймановские однопроцессорные системы, где имеется центральный процессор, работающий с парами "атрибут – значение".

Архитектуры с одиночными потоками команд и данных (SIMD). Особенностью данного класса является наличие одного (центрального) контроллера, управляющего рядом одинаковых процессоров. В зависимости от возможностей контроллера и процессорных элементов, числа процессоров, организации режима поиска и характеристик маршрутных и выравнивающих сетей выделяют:

  • матричные процессоры, используемые для решения векторных и матричных задач;
  • ассоциативные процессоры, применяемые для решения нечисловых задач и используюшие память, в которой можно обращаться непосредственно к информации, хранящейся в ней;
  • процессорные ансамбли, применяемые для числовой и нечисловой обработки;
  • конвейерные и векторные процессоры.

Архитектуры с множественным потоком команд и одиночным потоком данных (MISD). К этому классу могут быть отнесены конвейерные процессоры.

Архитектуры с множественным потоком команд и множественным потоком данных (MIMD). К этому классу могут быть отнесены следующие конфигурации: мультипроцессорные системы, системы с мультобработкой, вычислительные системы из многих машин, вычислительные сети.

Основные процедуры обработки данных представлены на рис. 4.5.

Создание данных, как процесс обработки, предусматривает их образование в результате выполнения некоторого алгоритма и дальнейшее использование для преобразований на более высоком уровне.

Модификация данных связана с отображением изменений в реальной предметной области, осуществляемых путем включения новых данных и удаления ненужных.

Рис. 4.5 Основные процедуры обработки данных

Контроль, безопасность и целостность направлены на адекватное отображение реального состояния предметной области в информационной модели и обеспечивают защиту информации от несанкционированного доступа (безопасность) и от сбоев и повреждений технических и программных средств.

Поиск информации, хранимой в памяти компьютера, осуществляется как самостоятельное действие при выполнении ответов на различные запросы и как вспомогательная операция при обработке информации.

Поддержка принятия решения является наиболее важным действием, выполняемым при обработке информации. Широкая альтернатива принимаемых решений приводит к необходимости использования разнообразных математических моделей .

Создание документов, сводок, отчетов заключается в преобразовании информации в формы, пригодные для чтения как человеком, так и компьютером. С этим действием связаны и такие операции, как обработка, считывание, сканирование и сортировка документов.

При преобразовании информации осуществляется ее перевод из одной формы представления или существования в другую, что определяется потребностями, возникающими в процессе реализации информационных технологий.

Реализация всех действий, выполняемых в процессе обработки информации, осуществляется с помощью разнообразных программных средств.

Наиболее распространенной областью применения технологической операции обработки информации является принятие решений.

В зависимости от степени информированности о состоянии управляемого процесса, полноты и точности моделей объекта и системы управления, взаимодействия с окружающей средой, процесс принятия решения протекает в различных условиях:

  • 1. Принятие решений в условиях определенности. В этой задаче модели объекта и системы управления считаются заданными, а влияние внешней среды – несущественным. Поэтому между выбранной стратегией использования ресурсов и конечным результатом существует однозначная связь, откуда следует, что в условиях определенности достаточно использовать решающее правило для оценки полезности вариантов решений, принимая в качестве оптимального то, которое приводит к наибольшему эффекту. Если таких стратегий несколько, то все они считаются эквивалентными. Для поиска решений в условиях определенности используют методы математического программирования.
  • 2. Принятие решений в условиях риска. В отличие от предыдущего случая для принятия решений в условиях риска необходимо учитывать влияние внешней среды, которое не поддается точному прогнозу, а известно только вероятностное распределение се состояний. В этих условиях использование одной и той же стратегии может привести к различным исходам, вероятности появления которых считаются заданными или могут быть определены. Оценку и выбор стратегий проводят с помощью решающего правила, учитывающего вероятность достижения конечного результата.
  • 3. Принятие решений в условиях неопределенности. Как и в предыдущей задаче между выбором стратегии и конечным результатом отсутствует однозначная связь. Кроме того, неизвестны также значения вероятностей появления конечных результатов, которые либо не могут быть определены, либо не имеют в контексте содержательного смысла. Каждой паре "стратегия – конечный результат" соответствует некоторая внешняя оценка в виде выигрыша. Наиболее распространенным является использование критерия получения максимального гарантированного выигрыша.
  • 4. Принятие решений в условиях многокритериальности. В любой из перечисленных выше задач многокритериальности возникает в случае наличия нескольких самостоятельных, не сводимых одна к другой целей. Наличие большого числа решений усложняет оценку и выбор оптимальной стратегии. Одним из возможных путей решения является использование методов моделирования.

Решение задач с помощью искусственного интеллекта заключается в сокращении перебора вариантов при поиске решения, при этом программы реализуют те же принципы, которыми пользуется в процессе мышления человек.

Экспертная система пользуется знаниями, которыми она обладает в своей узкой области, чтобы ограничить поиск на пути к решению задачи путем постепенного сужения круга вариантов.

Для решения задач в экспертных системах используют:

  • метод логического вывода, основанный на технике доказательств, называемой резолюцией и использующей опровержение отрицания (доказательство "от противного");
  • метод структурной индукции, основанный на построении дерева принятия решений для определения объектов из большого числа данных на входе;
  • метод эвристических правил, основанных на использовании опыта экспертов, а не на абстрактных правилах формальной логики;
  • метод машинной аналогии, основанный на представлении информации о сравниваемых объектах в удобном виде, например, в виде структур данных, называемых фреймами.

Источники "интеллекта", проявляющегося при решении задачи, могут оказаться бесполезными либо полезными или экономичными в зависимости от определенных свойств области, в которой поставлена задача. Исходя из этого, может быть осуществлен выбор метода построения экспертной системы или использования готового программного продукта.

Процесс выработки решения на основе первичных данных, схема которого представлена на рис. 4.6, можно разбить на два этапа: выработка допустимых вариантов решений путем математической формализации с использованием разнообразных моделей и выбор оптимального решения на основе субъективных факторов.

Информационные потребности лиц, принимающих решение, во многих случаях ориентированы на интегральные технико-экономические показатели, которые могут быть получены в результате обработки первичных данных, отражающих текущую деятельность предприятия. Анализируя функциональные взаимосвязи между итоговыми и первичными данными, можно построить так называемую информационную схему, которая отражает процессы агрегирования информации. Первичные данные, как правило, чрезвычайно разнообразны, интенсивность их поступления высока, а общий объем на интересующем интервале велик. С другой стороны состав интегральных показателей относительно мал, а требуемый

Рис. 4.6.

период их актуализации может быть значительно короче периода изменения первичных данных – аргументов.

Для поддержки принятия решений обязательным является наличие следующих компонент:

  • обобщающего анализа;
  • прогнозирования;
  • ситуационного моделирования.

В настоящее время принято выделять два типа информационных систем поддержки принятия решений.

Системы поддержки принятия решений DSS (Decision Support System) осуществляют отбор и анализ данных по различным характеристикам и включают средства:

  • доступа к базам данных;
  • извлечения данных из разнородных источников;
  • моделирования правил и стратегии деловой деятельности;
  • деловой графики для представления результатов анализа;
  • анализа "если что";
  • искусственного интеллекта на уровне экспертных систем.

Системы оперативной аналитической обработки OLAP (OnLine Analysis Processing) для принятия решений используют следующие средства:

  • мощную многопроцессорную вычислительную технику в виде специальных OLAP-серверов;
  • специальные методы многомерного анализа;
  • специальные хранилища данных Data Warehouse.

Реализация процесса принятия решений заключается в построении информационных приложений. Выделим в информационном приложении типовые функциональные компоненты, достаточные для формирования любого приложения на основе БД (2).

PS (Presentation Services) – средства представления. Обеспечиваются устройствами, принимающими ввод от пользователя и отображающими то, что сообщает ему компонент логики представления PL, плюс соответствующая программная поддержка. Может быть текстовым терминалом или Х-терминалом, а также персональным компьютером или рабочей станцией в режиме программной эмуляции терминала или Х-терминала.

PL (Presentation Logic) логика представления. Управляет взаимодействием между пользователем и ЭВМ. Обрабатывает действия пользователя по выбору альтернативы меню, по нажатию кнопки или выбору элемента из списка.

BL (Business or Application Logic) – прикладная логика. Набор правил для принятия решений, вычислений и операций, которые должно выполнить приложение.

DL (Data Logic) – логика управления данными. Операции с базой данных (SQL-операторы SELECT, UPDATE и INSERT), которые нужно выполнить лля реализации прикладной логики управления данными.

DS (Data Services) – операции с базой данных. Действия СУБД, вызываемые для выполнения логики управления данными, такие как манипулирование данными, определения данных, фиксация или откат транзакций и т.п. СУБД обычно компилирует SQL-приложения.

FS (File Services) – файловые операции. Дисковые операции чтения и записи данных для СУБД и других компонент. Обычно являются функциями ОС.

Среди средств разработки информационных приложений.можно выделить следующие основные группы:

  • традиционные системы программирования;
  • инструменты для создания файл-серверных приложений;
  • средства разработки приложений "клиент-сервер";
  • средства автоматизации делопроизводства и документооборота;
  • средства разработки Интернет/Интранет-приложений;
  • средства автоматизации проектирования приложений.

Отметим тот факт - что в современных развитых информационных системах машинная обработка информации предполагает последовательно-параллельное во времени решение вычислительных задач. Это возможно при наличии определенной организации вычислительного процесса. Вычислительная задача, формируемая источником вычислительных задач (ИВЗ), по мере необходимости решения обращается с запросами в вычислительную систему. Организация вычислительного процесса предполагает определение последовательности решения задач и реализацию вычислений. Последовательность решения задается, исходя из их информационной взаимосвязи, т.е. когда результаты решения одной задачи могут быть использованы как исходные данные для решения другой. Процесс решения определяется принятым вычислительным алгоритмом. Вычислительные алгоритмы должны объединяться в ϲᴏᴏᴛʙᴇᴛϲᴛʙии с требуемой технологической последовательностью решения задач в вычислительный граф системы обработки информации. По϶ᴛᴏму в вычислительной системе можно выделить систему диспетчирования (СД), кᴏᴛᴏᴩая определяет организацию вычислительного процесса, и ЭВМ (возможно и не одну), обеспечивающую обработку информации.

Стоит сказать, что каждая вычислительная задача, поступающая в вычислительную систему, может быть рассмотрена как некᴏᴛᴏᴩая заявка на обслуживание. Последовательность вычислительных задач во времени создает поток заявок. В ϲᴏᴏᴛʙᴇᴛϲᴛʙии с требованиями на организацию вычислительного процесса возможно перераспределение поступающих задач на базе принятой схемы диспетчирования. По϶ᴛᴏму в структуре вычислительной системы должны быть предусмотрены ϲᴏᴏᴛʙᴇᴛϲᴛʙующие накопители и устройства диспетчирования, кᴏᴛᴏᴩые обеспечивают реализацию оптимальной организации вычислительного процесса.

На рис. 4.3 представлена обобщенная структурная схема вычислительной системы. ИВЗ формирует входной поток заявок на их решение.

С помощью диспетчера Д1 реализуется обоснование поступившей заявки и постановка ее в очередь О1...ON, кᴏᴛᴏᴩые реализуются на ячейках оперативной памяти. Заявки отображаются кодами и ожидают начала обслуживания в зависимости от информационной взаимосвязи между задачами. Диспетчер Д2 выбирает из очередей заявку на обслуживание, т.е. передает вычислительную задачу для обработки ЭВМ. Обслуживание обычно осуществляется в ϲᴏᴏᴛʙᴇᴛϲᴛʙии с принятым планом организации вычислительного процесса. Процесс выбора заявки из множества называется диспетчированием. Обычно выбирается заявка, имеющая преимущественное право на обслуживание. При ϶ᴛᴏм инициируется ϲᴏᴏᴛʙᴇᴛϲᴛʙующая программа, реализующая вычислительный алгоритм решения задачи. При отсутствии заявок в очередях диспетчер Д2 переключает процессоры ЭВМ в состояние ожидания. В общем случае в вычислительной системе реализуется параллельное обслуживание за счет наличия нескольких ЭВМ (ЭВМ1...ЭВМS) Можно считать, что процесс обслуживания осуществляется в два этапа. Сначала заявки ставятся в очередь с помощью диспетчера Д1, а на следующем этапе они обслуживаются путем выбора заявок из очереди диспетчером Д2. Диспетчеры Д1 и Д2 реализуются программным путем и представляют собой управляющие программы. Информационные процессы в автоматизированных системах организационного управления реализуются с помощью ЭВМ и других технических средств. В ходе развития вычислительной техники совершенствуются и формы ее использования. Существуют разнообразные способы доступа и общения с ЭВМ. Индивидуальный и коллективный доступ к вычислительным ресурсам зависит от степени их концентрации и организационных форм функционирования. Централизованные формы применения вычислительных средств, кᴏᴛᴏᴩые существовали до массового использования ПЭВМ, предполагали их сосредоточение в одном месте и организацию информационно-вычислительных центров (ИВЦ) индивидуального и коллективного пользования (ИВЦКП)

Деятельность ИВЦ и ИВЦКП характеризовалась обработкой больших объемов информации, использованием нескольких средних и больших ЭВМ, квалификационным персоналом для обслуживания техники и разработки программного обеспечения. Централизованное применение вычислительных и других технических средств позволяло организовать их надежную работу, планомерную загрузку и квалификационное обслуживание. Централизованная обработка информации наряду с рядом положительных сторон (высокая степень загрузки и высокопроизводительное использование оборудования, квалифицированный кадровый состав операторов, программистов, инженеров, проектировщиков вычислительных систем и т.п.) имела ряд отрицательных черт, порожденных прежде всего отрывом конечного пользователя (экономиста, плановика, нормировщика и т.п.) от технологического процесса обработки информации.

Децентрализованные формы использования вычислительных ресурсов начали формироваться со второй половины 80-х годов, когда сфера экономики получила возможность перейти к массовому использованию персональных ЭВМ (ПЭВМ) Децентрализация предусматривает размещение ПЭВМ в местах возникновения и потребления информации, где создаются автономные пункты ее обработки. К ним ᴏᴛʜᴏϲᴙтся абонентские пункты (АП) и автоматизированные рабочие места.

Рисунок № 4.3. Обобщенная структура вычислительной системы: ИВЗ — информационно-вычислительная заявка; Д — диспетчер; О — очередь заявок на обслуживание

Обработка экономической информации на ЭВМ производитсятрадиционно централизованно, а на мини- и микроЭВМ — в местах возникновения первичной информации, где организуются автоматизированные рабочие места специалистов той или иной управленческой службы (отдела материально-технического снабжения и сбыта, отдела главного технолога, конструкторского отдела, бухгалтерии, планового отдела и т.п.) Автоматизированное рабочее место (АРМ) специалиста включает персональную ЭВМ (ПЭВМ), работающую автономно или в вычислительной сети, набор программных средств и информационных массивов для решения функциональных задач. Обработка экономической информации на ПЭВМ начинается при полной готовности всех устройств машины. Уместно отметить, что оператор или пользователь при выполнении работы на ПЭВМ руководствуется специальной инструкцией по эксплуатации технических и программных средств.

В начале работы в машины загружаются программа и различные информационные массивы (условно-постоянные, переменные, справочные), каждый из кᴏᴛᴏᴩых сначалатрадиционно обрабатывается для получения каких-либо результатных показателей, а затем массивы объединяются для получения ϲʙᴏдных показателей.

При обработке экономической информации на ЭВМ выполняются арифметические и логические операции. Арифметические операции обработки данных в ЭВМ включают все виды математических действий, обусловленных программой. Логические операции обеспечивают ϲᴏᴏᴛʙᴇᴛϲᴛʙующее упорядочение данных в массивах (первичных, промежуточных, постоянных, переменных), подлежащих дальнейшей арифметической обработке. Значительное место в логических операциях занимают такие виды сортировальных работ, как упорядочение, распределение, подбор, выборка, объединение. В ходе решения задач на ЭВМ, в ϲᴏᴏᴛʙᴇᴛϲᴛʙии с машинной программой, формируются результатные ϲʙᴏдки, кᴏᴛᴏᴩые печатаются машиной. Печать ϲʙᴏдок может сопровождаться процедурой тиражирования, если документ с результатной информацией крайне важно предоставить нескольким пользователям.

Отметим, что технология электронной обработки информации — человеко-машинный процесс исполнения взаимосвязанных операций, протекающих в установленной последовательности с целью преобразования исходной (первичной) информации в результатную. Уместно отметить, что операция представляет собой комплекс совершаемых технологических действий, в результате кᴏᴛᴏᴩых информация преобразуется. Отметим, что технологические операции разнообразны по сложности, назначению, технике реализации, выполняются на различном оборудовании, многими исполнителями. В условиях электронной обработки данных преобладают операции, выполняемые автоматически на машинах и устройствах, кᴏᴛᴏᴩые считывают данные, выполняют операции по заданной программе в автоматическом режиме при участии человека или сохраняя за пользователем функции контроля, анализа и регулирования.

Построение технологического процесса определяется следующими факторами: особенностями обрабатываемой информации, ее объемом, требованиями срочности и точности обработки, типами, количеством и характеристиками применяемых технических средств. Стоит заметить, что они ложатся в основу организации технологии, кᴏᴛᴏᴩая включает установление перечня, последовательности и способов выполнения операций, порядка работы специалистов и средств автоматизации, организацию рабочих мест, установление временных регламентов взаимодействия и т.п. Организация технологического процесса должна обеспечить его экономичность, комплексность, надежность функционирования, высокое качество работ. Это достигается использованием системотехнического подхода к проектированию технологии и решения экономических задач. При ϶ᴛᴏм имеет место комплексное взаимосвязанное рассмотрение всех факторов, путей, методов построения технологии, применение элементов типизации и стандартизации, а также унификации схем технологических процессов.

Отметим, что технология автоматизированной обработки информации строится на принципах:

  • интеграции обработки данных и возможности работы пользователей в условиях эксплуатации автоматизированных систем централизованного хранения и коллективного использования данных (банков данных);
  • распределенной обработки данных на базе развитых систем передачи;
  • рационального сочетания централизованного и децентрализованного управления и организации вычислительных систем;
  • моделирования и формализованного описания данных, процедур их преобразования, функций и рабочих мест исполнителей;
  • учета конкретных особенностей объекта, в кᴏᴛᴏᴩом реализуется машинная обработка информации.

Организация технологии обработки информации на отдельных ее этапах имеет ϲʙᴏи особенности, что дает основание для выделения внемашинной и внутримашинной технологии. Внемашинная технология (ее нередко именуют предбазовой) объединяет операции сбора и регистрации данных, запись данных на машинные носители с контролем. Внутримашинная технология связана с организацией вычислительного процесса в ЭВМ, организацией массивов данных в памяти и их структуризацией, что дает основание называть ее еще и внутрибазовой.

Основной этап информационного технологического процесса связан с решением функциональных задач на ЭВМ. Внутримашинная технология решения задач на ЭВМтрадиционно реализует следующие типовые процессы преобразования экономической информации:

формирование новых массивов информации; упорядочение информационных массивов;

выборка из массива некᴏᴛᴏᴩых частей записи, слияние и разделение массивов;

внесение изменений в массив; выполнение арифметических действий над реквизитами в пределах записей, в пределах массивов; над записями нескольких массивов.

Решение каждой отдельной задачи или комплекса задач требует выполнения следующих операций:

  • ввод программы машинного решения задачи и размещения ее в памяти ЭВМ;
  • ввод исходных данных;
  • логический и арифметический контроль введенной информации;
  • исправление ошибочных данных;
  • компоновка входных массивов и сортировка введенной информации;
  • вычисления по заданному алгоритму;
  • получение выходных массивов информации;
  • редактирование выходных форм;
  • вывод информации на экран и машинные носители;
  • печать выходных данных.

Выбор того или иного варианта технологии определяется прежде всего как объемно-временными особенностями решаемых задач, периодичностью, срочностью, требованиями к быстроте связи пользователя с ЭВМ, так и режимными возможностями технических средств — в первую очередь ЭВМ.

Различают следующие режимы взаимодействия пользователя с ЭВМ: пакетный и интерактивный (запросный, диалоговый) Сами же ЭВМ могут функционировать в следующих режимах: одно- и многопрограммном, разделении времени, реального времени, телеобработки. При ϶ᴛᴏм предусматривается цель удовлетворения потребности пользователей в максимально возможной автоматизации решения разнообразных задач.

Пакетный режим был наиболее распространен в практике централизованного решения экономических задач, когда большой удельный вес занимали задачи отчетности о производственно-хозяйственной деятельности экономических объектов разного уровня управления. Организация вычислительного процесса при пакетном режиме строилась без доступа пользователя к ЭВМ. Его функции ограничивались подготовкой исходных данных по комплексу информационно-взаимосвязанных задач и передачей их в центр обработки, где формировался пакет, включающий задание для ЭВМ на обработку, программы, исходные, нормативно-расценочные и справочные данные. Пакет вводился в ЭВМ и реализовывался в автоматическом режиме без участия пользователя и оператора, что позволяло минимизировать время выполнения заданного набора задач. При ϶ᴛᴏм работа ЭВМ могла проходить в однопрограммном или многопрограммном режиме, что предпочтительнее, так как обеспечивалась параллельная работа основных устройств машины. B настоящее время пакетный режим реализуется применительно к электронной почте.

Интерактивный режим предусматривает непосредственное взаимодействие пользователя с информационно-вычислительной системой, может носить характер запроса (как правило, регламентированного) или диалога с ЭВМ.

Запросный режим необходим пользователям для взаимодействия с системой через значительное число абонентских терминальных устройств, в т.ч. удаленных на значительное расстояние от центра обработки. Именно такая необходимость обусловлена решением оперативных задач справочно-информационного характера, какими будут, например, задачи резервирования билетов на транспорте, номеров в гостиничных комплексах, выдача справочных сведений и т.п. ЭВМ в подобных случаях реализует систему массового обслуживания, работает в режиме разделения времени, при кᴏᴛᴏᴩом несколько независимых абонентов (пользователей) с помощью устройств ввода-вывода имеют в процессе решения ϲʙᴏих задач непосредственный и практически одновременный доступ к ЭВМ. Этот режим позволяет дифференцированно в строго установленном порядке предоставлять каждому пользователю время для общения с ЭВМ, а после окончания сеанса отключать его.

Диалоговый режим открывает пользователю возможность непосредственно взаимодействовать с вычислительной системой в допустимом для него темпе работы, реализуя повторяющийся цикл выдачи задания, получения и анализа ответа. При ϶ᴛᴏм ЭВМ сама может инициировать диалог, сообщая пользователю последовательность шагов (представление меню) для получения искомого результата.

Обе разновидности интерактивного режима (запросный, диалоговый) основываются на работе ЭВМ в режимах реального времени и телеобработки, кᴏᴛᴏᴩые будут дальнейшим развитием режима разделения времени. По϶ᴛᴏму обязательными условиями функционирования системы в данных режимах будут, во-первых, постоянное хранение в запоминающих устройствах ЭВМ необходимой информации и программ и исключительно в минимальном объеме поступление исходной информации от абонентов и, во-вторых, наличие у абонентов ϲᴏᴏᴛʙᴇᴛϲᴛʙующих средств связи с ЭВМ для обращения к ней в любой момент времени.

Рассмотренные технологические процессы и режимы работы пользователей в системе «человек — машина» особенно четко пробудут при интегрированной обработке информации, кᴏᴛᴏᴩая характерна для современного автоматизированного решения задач в многоуровневых информационных системах.

Развитие организационных форм вычислительной техники строится на сочетании централизованной и децентрализованной — смешанной — форм. Предпосылкой появления смешанной формы явилось создание сетей ЭВМ на базе различных средств связи. Сети ЭВМ предполагают объединение в систему с помощью каналов связи вычислительных средств, программных и информационных ресурсов (баз данных, баз знаний) Сетями могут охватываться различные формы использования ЭВМ, причем каждый абонент имеет возможность доступа не только к ϲʙᴏим вычислительным ресурсам, но и к ресурсам всех остальных абонентов, что создает ряд преимуществ при эксплуатации вычислительной системы.

В последнее время организация применения компьютерной техники претерпевает значительные изменения, связанные с переходом к созданию интегрированных информационных систем. Интегрированные информационные системы создаются с учетом того, что они должны осуществлять согласованное управление данными в пределах предприятия (организации), координировать работу отдельных подразделений, автоматизировать операции по обмену информацией как в пределах отдельных групп пользователей, так и между несколькими организациями, отстоящими друг от друга на десятки и сотни километров.
Стоит отметить, что основой для построения подобных систем служат локальные вычислительные сети (ЛВС) Характерной чертой ЛВС будет предоставление возможности пользователям работать в универсальной информационной среде с функциями коллективного доступа к данным.

В последние 3 — 4 года компьютеризация вышла на новый уровень: активно создаются вычислительные системы различной конфигурации на базе персональных компьютеров (ПК) и более мощных машин. Состоящие из нескольких автономных компьютеров с общими совместно используемыми внешними устройствами (диски, ленты) и единым управлением, они позволяют обеспечить более надежную защиту компьютерных ресурсов (устройств, баз данных, программ), повысить отказоустойчивость, обеспечить простоту модернизации и наращивания мощности системы.

Все больше внимания уделяется развитию не только локальных, но и распределенных сетей, без кᴏᴛᴏᴩых немыслимо решение современных задач информатизации.

Учитывая зависимость от степени централизации вычислительных ресурсов роль пользователя и его функции меняются. При централизованных формах, когда у пользователей нет непосредственного контакта с ЭВМ, его роль ϲʙᴏдится к передаче исходных данных на обработку, получению результатов, выявлению и устранению ошибок. При непосредственном общении пользователя с ЭВМ его функции в информационной технологии расширяются. Стоит заметить, что он сам вводит данные, формирует информационную базу, решает задачи, получает результаты, оценивает их качество. У пользователя открываются реальные возможности решать задачи с альтернативными вариантами, анализировать и выбирать с помощью системы в конкретных условиях наиболее приемлемый вариант. Все ϶ᴛᴏ реализуется в пределах одного рабочего места. От пользователя при ϶ᴛᴏм требуется знание основ информатики и вычислительной техники.

В завершение данного параграфа заметим, что процесс обработки информации был описан на самом верхнем уровне («вид сверху») Более детальное рассмотрение ϶ᴛᴏго процесса, изучение его характеристик различных моделей обслуживания (диспетчирования) будет содержанием специальных дисциплин.