Оцифровка сигнала. Балансное и не балансное соединение. Коммутация аналоговой студии. Не балансное соединение

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

«Цифровая обработка сигналов»

Выполнил: Чунихин В.А.

Группа: 5401 С349

Проверил: Капустин А.С.



ВВЕДЕНИЕ. 7

ЗАКЛЮЧЕНИЕ. 34

ПРИЛОЖЕНИЕ А.. 36


ТЗ – техническое задание

АМ – амплитудная модуляция

ПФ – полосовой фильтр


ВВЕДЕНИЕ


ПРЕОБРАЗОВАНИЕ МОДУЛИРОВАННОГО СИГНАЛА В ДОПОЛНИТЕЛЬНЫЙ ДИАПАЗОН. ПРОЦЕДУРА ПОЛУЧЕНИЯ ДИСКРЕТНО-АНАЛИТИЧЕСКОГО СИГНАЛА (ПРЕОБРАЗОВАТЕЛЬ ГИЛЬБЕРТА)

Цифровым преобразователем Гильберта (ЦПГ) называют линейную дискретную систему, формирующую на выходе пару дискретных сигналов, сопряженных по Гильберту (фазы сигналов отличаются на ) в заданной рабочей полосе.



В нашем случае рабочая полоса была выбрана по НЧ огибающей модулированного колебания, рисунок 21.

Рисунок 21 – НЧ огибающая сигнала

Данный график был получен следующим образом:

A_m=abs(complex(x));

plot(t,A_m,"r-");grid on;

ylim([-0.5 9.5]);

title("НЧ огибающая");

Определим полосу частот, формула (10).

где - длительность всего импульса.

ЦПГ может быть реализован на базе КИХ-фильтров 3-го и 4-го типов, ЛФЧХ которых обеспечивает сдвиг фазы на . Предпочтение отдается КИХ-фильтру 3-го типа, так как он позволяет получить импульсную характеристику (ИХ) , каждый второй отчет который равен нулю, тем самым сокращается число арифметических операций при вычислении реакции ЦПГ, что весьма важно при его реализации, например, на цифровом процессоре обработки сигналов (ЦПОС).

На базе КИХ-фильтра 3-го типа можно синтезировать только полосовой фильтр (ПФ), при этом специфика требований к АЧХ ЦПГ, по сравнению с требованиями к АЧХ ПФ, будет следующей :

1) АЧХ ЦПГ должна быть симметричной относительно середины основной полосы частот для получения ИХ , каждый второй отсчет которой равен нулю. Поэтому требования к АЧХ ЦПГ задаются симметрично относительно .

2) Рабочая полоса ЦПГ не должна превосходить полосу пропускания ПФ.

3) Максимально допустимое отклонение в рабочей полосе не должно быть меньше максимального допустимого отклонения в ПП.

4) Максимально допустимое отклонение в ПЗ нет необходимости задавать слишком жестко, так как эффективность ЦПГ оценивается в рабочей области.

По требованиям к АЧХ будем синтезировать ЦПГ (ПФ) минимального порядка с помощью функции firgr на базе КИХ-фильтра 3-го типа (‘hilbert’) с параметром m, равным ‘mineven’:


plot_fir(R,b,Fs1);

Наш параметр R, который задает порядок фильтра в итоге равен 24. Частоты были выбраны следующим образом:

Fs1=220; - частота дискретизации

fk1=10; - граничная частота ПЗ1

ft1=20; - граничная частота ПП1

ft2=92; - граничная частота ПП2

fk2=102 – граничная частота ПЗ2

Для вывода графиков была использована следующая функция:

function plot_fir(R,b,Fs1)

% R-порядок КИХ-фильтра

% Fs1-частота дискретизации

fm=0:((Fs1/2)/200):Fs1/2;

В итоге получилась следующая ИХ, АЧХ и ФЧХ, рисунок 22.


Рисунок 22 – Характеристики ПГ


Данная процедура была реализована путем домножения модулированного сигнала на , где 38 МГц – частота на которую происходило смещение.

Это было получено следующим образом в программном пакете MATLAB:

x1=z1.*cos(2*pi*38000000*t);

Получение спектра:

NFFT=2^nextpow2(length(x1));

y=fft(x1,NFFT)/length(x1);

plot(f,2*abs(y(1:NFFT/2+1)));

xlim ();

title("АЧХ сдвинутая");

plot(f,2*abs(y(1:NFFT/2+1)));

xlim ();

title("Сигнал сдвинутый");

Изобразим выданный спектр, рисунок 23.


Рисунок 23 – Спектр модулированного сигнала после сдвига

Как видно из рисунка 23 спектр симметричен относительно 3.8 МГц, значит это действительно спектр АМ.

Далее нужно пустить наш сигнал на ПГ, где на выходе мы должны наблюдать два сигнала, отличающихся между собою по фазе на четверть периода, те мы получим ортогональное дополнение сигнала, который аналитически выглядит следующим образом, формула (11).


Функция в MATLAB, реализующая данную операцию является функция pg.

где x1 – модулированный сигнал, смещенный по частоте.

Выведем графики, показывающие .

plot(t,real(pg),"k"),grid on

plot(t,imag(pg),"--")

Изобразим результат на рисунке 24.

Рисунок 24 – Результат прохождения сигнала через ПГ в увеличенном масштабе


ЗАКЛЮЧЕНИЕ

В ходе работы были изучены основные принципы работы цифровой обработки сигналов: оцифровка, получение дискретного спектра, перенос спектра в область высших частот и так далее. Были получены навыки работы программного пакета MATLAB: создание функций, управление частотных и временных векторов, выдача графиков, описание графиков, модулирование процессов, создание фильтров. Данные навыки необходимы для разработчиков различных цифровых систем. Суть работы заключалась в оцифровке аналогового сигнала, его пропуск через простейший канал связи и получение его на выходе системы.


ПРИЛОЖЕНИЕ А

Листинг программы MATLAB

Функция построения характеристик ПГ:

function plot_fir(R,b,Fs1)

% Построение графиков характеристик КИХ-фильтра

% R-порядок КИХ-фильтра

% b-вектор коэффициентов передаточной функции

% a=-коэффициент знаменателя передаточной функции

% Fs1-частота дискретизации

subplot(3,1,1),stem(n,b,"fill","MarkerSize",3),xlabel("n"),...

title("Impulse Response"),grid on;

fm=0:((Fs1/2)/200):Fs1/2;

H=freqz(b,a,fm,Fs1);MAG=abs(H);PHASE=angle(H);

subplot(3,1,2),plot(fm,MAG),xlabel("f(Hz)"),title("MAGNITUDE"),grid on;

subplot(3,1,3),plot(fm,PHASE),xlabel("f(Hz)"),title("PHASE"),grid on;

Основной код программы:

%% Параметры импульса

dF=80e6; % Частота дискретизации, Гц

dt=1/dF; % Интервал дискретизации, сек

%% Формирование массива временных отсчетов

%% Прямоугольный импульс

x1=3*rectpuls(t-ti1/2,ti1);

plot(t,x1,"k"),grid;

title("Прямоугольный импульс");

ylim([-0.5 3.5]);

stem(t,x1,"k."),grid;

title("Прямоугольный импульс (цифра)");

ylim([-0.5 3.5]);

NFFT=2^nextpow2(length(x1));

y1=fft(x1,NFFT)/length(x1);

f=dF/2*linspace(0,1,NFFT/2+1);

plot(f,2*abs(y1(1:NFFT/2+1)));

title("АЧХ");

ylabel("y1(f)");

plot(f,angle(y1(1:NFFT/2+1)));

title("ФЧХ");

ylabel("y1(f)");

%% Синусоидальный импульс

x2=4*sin(pi*(t-t11)/12e-3).*(t>=t11).*(t<=t22);

plot(t,x2,"k"),grid;

title("Синусоидальный импульс");

ylim([-0.5 4.5]);

stem(t,x2,"k."),grid;

title("Синусоидальный импульс (цифра)");

ylim([-0.5 4.5]);

NFFT=2^nextpow2(length(x2));

y2=fft(x2,NFFT)/length(x2);

f=dF/2*linspace(0,1,NFFT/2+1);

% Plot single-sided amplitude spectrum

plot(f,2*abs(y2(1:NFFT/2+1)));

title("АЧХ");

ylabel("y2(f)");

plot(f,angle(y2(1:NFFT/2+1)));

title("ФЧХ");

ylabel("y2(f)");

%% Треугольный импульс

plot(t,x3,"k"),grid;

title("Треугольный импульс");

ylim([-0.5 3.5]);

stem(t,x3,"k."),grid;

title("Треугольный импульс (цифра)");

ylim([-0.5 3.5]);

NFFT=2^nextpow2(length(x3));

y3=fft(x3,NFFT)/length(x3);

f=dF/2*linspace(0,1,NFFT/2+1);

% Plot single-sided amplitude spectrum

plot(f,2*abs(y3(1:NFFT/2+1)));

title("АЧХ");

ylabel("y3(f)");

plot(f,angle(y3(1:NFFT/2+1)));

title("ФЧХ");

ylabel("y3(f)");

%% Трапецеидальный импульс

plot(t,x4,"k"),grid;

title("Трапецеидальный импульс");

ylim([-9.5 0.5]);

stem(t,x4,"k."),grid;

title("Трапецеидальный импульс (цифра)");

ylim([-9.5 0.5]);

NFFT=2^nextpow2(length(x4));

y4=fft(x4,NFFT)/length(x4);

f=dF/2*linspace(0,1,NFFT/2+1);

% Plot single-sided amplitude spectrum

plot(f,2*abs(y4(1:NFFT/2+1)));

title("АЧХ");

ylabel("y4(f)");

plot(f,angle(y4(1:NFFT/2+1)));

title("ФЧХ");

ylabel("y4(f)");

%% Общий импульс

plot(t,x,"k"),grid;

title("Общий импульс (восстановленный)");

title("Общий импульс (цифра)");

NFFT=2^nextpow2(length(x));

y=fft(x,NFFT)/length(x);

f=dF/2*linspace(0,1,NFFT/2+1);

plot(f,2*abs(y(1:NFFT/2+1)));

title("АЧХ");

plot(f,angle(y(1:NFFT/2+1)));

title("ФЧХ");

%% Амплитудная Манипуляция

Fc=dF*5; % Несущая частота

t1=(0:length(x)*FsdF-1)/Fs;

% формирование АМн-сигнал

s_ask=x(floor(dF*t1)+1.*cos(2*pi*Fc*t1));

plot(t1,s_ask,"k"),grid;

ylim([-9.5 4.5]);

title("Амплитудная Манипуляция");

NFFT=2^nextpow2(length(s_ask));

y6=fft(s_ask,NFFT)/length(s_ask);

f=dF/2*linspace(0,1,NFFT/2+1);

plot(f,2*abs(y6(1:NFFT/2+1)));

title("АЧХ");

%% АМ (через функцию ammod)

t=-1e-5:dt:28.3e-3; % отчеты временной оси

Fc=10000; % Несущая частота

z1=ammod(x,Fc,dF,0,13);

plot(t,z1),grid;

title("Амплитудная модуляция");

NFFT=2^nextpow2(length(z1));

y5=fft(z1,NFFT)/length(z1);

f=dF/2*linspace(0,1,NFFT/2+1);

plot(f,2*abs(y5(1:NFFT/2+1)));

title("АЧХ");

A_m=abs(complex(x));

plot(t,A_m,"r-");grid on;

ylim([-0.5 9.5]);

title("НЧ огибающая");

%% Смещение по частоте

x1=z1.*cos(2*pi*38000000*t);

NFFT=2^nextpow2(length(x1));

y=fft(x1,NFFT)/length(x1);

f=dF/2*linspace(0,1,NFFT/2+1);

plot(f,2*abs(y(1:NFFT/2+1)));

xlim ();

title("АЧХ сдвинутая");

plot(f,2*abs(y(1:NFFT/2+1)));

xlim ();

title("АЧХ сдвинутая (увеличенный масштаб)");

title("Сигнал сдвинутый");

%% Характеристики ПГ

fk1=10;ft1=20;ft2=92;fk2=102; f=;

d2=0.1;d1=0.05;ripple=;

Firpmord(f,m,ripple,Fs1);

Firgr({"mineven",R},f0,m0,ripple,"hilbert");

plot_fir(R,b,Fs1);

plot(t,real(pg),"k"),grid on

plot(t,imag(pg),"r-.")

legend("Real Part","Imaginary Part")

xlim()

plot(t,yout),grid on;

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к курсовой работе по дисциплине

«Цифровая обработка сигналов»

Выполнил: Чунихин В.А.

Группа: 5401 С349

Проверил: Капустин А.С.


1. Провести дискретизацию, оцифровку заданного сигнала;

2. Ограничить спектр дискретного сигнала;

4. Преобразовать модулированный сигнал в дополнительный частотный диапазон;

5. Реализовать процедуру получения дискретно-аналитического сигнала (ПГ);

6. Осуществить демодуляцию полученного сигнала и сравнить его с первоначальным сигналом.

Изобразим форму заданного сигнала по варианту, рисунок 1.

Рисунок 1 – Форма заданного сигнала

Параметры сигнала зададим в виде таблиц 1 и 2.

Таблица 1 – Временные параметры сигнала


Пояснительная записка: 43 страницы, 28 рисунков, 4 источника, 2 таблицы.

ДИСКРЕТИЗАЦИЯ, СПЕКТР, МОДУЛЯЦИЯ, ПРЕОБРАЗОВАТЕЛЬ ГИЛЬБЕРТА, ДЕМОДУЛЯЦИЯ.

В данной работе объектом исследования будет наш заданный сигнал. С ним будут проведены следующие преобразования: его оцифровка, ограничение по спектру, модуляция, перенос спектра в область ВЧ, получение дискретно-аналитического сигнала и демодуляция. Иными словами, будет рассмотрен простейший канал, с помощью которого добиваются электрического эквивалента нашей информации цифровыми способами. При модулировании данного тракта будет использован программный пакет MATLAB R2014a – это высокоуровневый язык и интерактивная среда для программирования, численных расчетов и визуальных результатов. С помощью MATLAB можно анализировать данные, разрабатывать алгоритмы, создавать модели и приложения. Его применение очень востребовано при обработке сигналов и связи во всем мире. Поэтому выбор программной среды пал именно на нем. Весь написанный код представлен в приложении А.


ВВЕДЕНИЕ. 7

1.ОЦИФРОВКА АНАЛОГОВОГО СИГНАЛА.. 8

2.ОГРАНИЧЕНИЕ СПЕКТРА ДИСКРЕТНОГО СИГНАЛА.. 14

3. ВЫБОР МОДУЛЯЦИИ И РАСЧЕТ МОДУЛИРОВАННОЙ ЧАСТОТЫ.. 21

4. ПРЕОБРАЗОВАНИЕ МОДУЛИРОВАННОГО СИГНАЛА В ДОПОЛНИТЕЛЬНЫЙ ДИАПАЗОН. ПРОЦЕДУРА ПОЛУЧЕНИЯ ДИСКРЕТНО-АНАЛИТИЧЕСКОГО СИГНАЛА (ПРЕОБРАЗОВАТЕЛЬ ГИЛЬБЕРТА) 24

5. ДЕМОДУЛЯЦИЯ ПОЛУЧЕННОГО СИГНАЛА И СРАВНЕНИЕ ЕГО С ПЕРВОНАЧАЛЬНЫМ СИГНАЛОМ.. 31

ЗАКЛЮЧЕНИЕ. 34

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ.. 35

ПРИЛОЖЕНИЕ А.. 36


СПИСОК ИСПОЛЬЗОВАННЫХ СОКРАЩЕНИЙ

FFT - fast fourier transform (быстрое преобразование Фурье)

АЧХ- амплитудно-частотная характеристика

ФЧХ – фазо-частотная характеристика

ИХ – импульсная характеристика

ТЗ – техническое задание

АМ – амплитудная модуляция

БАМ – балансная амплитудная модуляция

ЦПГ – цифровой преобразователь Гильберта

КИХ – конечная импульсная характеристика

ЦПОС – цифровой процесс обработки сигналов

ПФ – полосовой фильтр

ЦФНЧ – цифровой фильтр нижних частот


ВВЕДЕНИЕ

В современном мире аналоговая схемотехника уже осталась на заднем плане, сейчас схемотехника больше похожа на конструктор LEGO, который нужно правильно собрать и знать характеристики этого “конструктора”. Однако перед тем как собирать, нужно разработать данное устройство, смоделировать его, рассмотреть например его импульсную характеристику, прозондировать разными сложными сигналами в зависимости от требований заказчика и так далее. Эти устройства состоят из различных цифровых систем. Под цифровой системой понимается преобразование аналогового сигнала в последовательность чисел с последующей обработкой этой последовательности.

Цифровая фильтрация позволяет реализовывать более сложные алгоритмы обработки сигналов, нежели аналоговая. Например, обработкой последовательности чисел может заниматься специализированный микропроцессор или микроконтроллер.

Курсовая работа ставит своей целью привить студентам практические навыки в области дискретной и цифровой обработки сигналов.


ОЦИФРОВКА АНАЛОГОВОГО СИГНАЛА

Для того чтобы перейти к цифровому виду нужно выбрать частоту дискретизации. По теореме Котельникова она находится следующим образом, формула (1).

Однако работая с реальными сигналами, данной частоты оказывается недостаточно и формула 1 преобразовывается в следующий вид, формула (2).

где в свою очередь принимает любые целые числа.

В нашей работе нет смысла для нахождения (верхней частоты) спектра рассматривать весь набор импульсов, можно рассмотреть лишь тот у которого самый широкий спектр, то есть самый узкий во временной области. В данном сигнале это трапецеидальный импульс, чья длительность равна только лишь . Изобразим данный импульс на рисунке 2.


Рисунок 2 – Трапецеидальный импульс

При построении данного импульса было использовано следующее математическое описание в программе Mathcad, формула (3).


Теперь с помощью преобразования Фурье (FFT) перейдем в частотную область, формула (4).

Построим АЧХ, рисунок 3.


Рисунок 3 – АЧХ трапецеидального импульса

Теперь возьмем верхнюю частоту по длительности импульса, формула (5).

Чтобы доказать что по формуле (1) частоты дискретизации будет недостаточно попробуем сначала с ней поработать, то есть .

После того как выбрали частоту дискретизации, которую скорее всего придется увеличить в дальнейшем, так как при 2кГц будут ошибки при восстановлении, можно перейти к MATLAB.


Для того чтобы изобразить наш сигнал на временной оси с интервалом дискретизации в MATLAB нужно задать массив временных отсчетов. Он задается следующим образом: t=-1e-5:dt:28.3e-3.

Теперь зададим наши импульсы поочередно и просто их просуммируем в конце – получится первоначальный импульс.

Прямоугольный импульс:

ti1=7e-3; % Длительность импульса

x1=3*rectpuls(t-ti1/2,ti1);

Синусоидальный импульс:

x2=4*sin(pi*(t-t11)/12e-3).*(t>=t11).*(t<=t22);

Треугольный импульс:

x3=3*tripuls((t-t22)-4e-3,8e-3);

Трапецеидальный импульс:

x4=-9*trapmf(t,);

Общий импульс:

Для вывода графика используется функция plot, выглядит она следующим образом: plot(t,x,"k");

Где t – это массив временных отсчетов, который мы задали в начале, x – сам сигнал, а ‘k’ означает, что график будет черного цвета. Изобразим выданный график на рисунке 4.


Рисунок 4 – Общий импульс (восстановленный)

Восстановление происходит с помощью теоремы Котельникова, формула (6).

Как видно из рисунка 4 с данной дискретизацией, прямоугольник больше похож на трапецию, второй ноль пропал, а трапеция напоминает треугольник, те восстановление произошло с большой ошибкой. Отсюда делаем вывод, что нужно увеличить частоту дискретизации. Путем экспериментального подбора, нашу частоту дискретизации пришлось увеличить в 50 раз, так как при меньшей частоте дискретизации информация о переднем фронте трапеции была не ясна, он выглядел как вертикальная линия. Это связано с тем, что по заданию у нас очень маленький интервал по времени этого фронта, всего 0,08ms. Изобразим восстановленный сигнал на рисунке 5.

Рисунок 5 – Общий импульс (восстановленный) после увеличения частоты дискретизации

Изобразим его в дискретной форме, рисунок 6.

Рисунок 6 – Общий импульс в цифровой форме

Как видно из данного рисунка для хорошего восстановления понадобилось много отсчетов, для наглядности также изобразим передний фронт трапеции в увеличенном масштабе, покажем, сколько выборок понадобилось для его точного восстановления, рисунок 7.

Рисунок 7 – Передний фронт трапеции в дискретной форме

По рисунку видно, что для точного восстановления переднего фронта понадобилось 9 выборок.

Таким образом, мы оцифровали наш импульс, здесь можно подытожить, что разработчику приходится выбирать достаточно большую частоту дискретизации для точного восстановления формы сигнала, чтобы сохранить всю информацию о нем. Особенно, если форма сигнала – быстроменяющаяся.

Фразу «передача и запись звука» вам, наверное, приходилось слышать не раз, но вряд ли вы задумывались над тем, что она не совсем точно соответствует действительности.

Пожалуй, единственным устройством, в котором запись звука осуществлялась в буквальном смысле, был фонограф Эдисона. Во всех остальных случаях, когда речь заходит о «записи звука», фактически записывается или передается не сам звук, а информация о том, какими были колебания воздуха в момент записи.

В настоящее время для записи и передачи информации о звуке используются два принципиально различных способа - аналоговый и цифровой.

В первом случае изменениям звукового давления соответствуют пропорциональные изменения другой физической величины, например, электрического напряжения. В этом случае изменения электрического напряжения являются новым «носителем» информации о звуке.

Такой способ сохранения звуковой информации является аналоговым, и еще совсем недавно в звукозаписи и радиовещании он был единственным. В аналоговой электронике важно, чтобы изменение напряжения точно соответствовало изменению звукового давления. Напомним, что амплитуда звуковой волны определяет громкость звука, а ее частота - высоту звукового тона, следовательно, для достоверного сохранения звуковой информации амплитуда электрического напряжения должна быть пропорционально амплитуде звуковых колебаний. Частота напряжения, в свою очередь, должна соответствовать частоте звуковых колебаний.

Таким образом, нетрудно заметить, что форма электрического сигнала является полной копией формы звукового колебания и несет практически полную информацию о звуке. Преобразовать звуковые колебания в колебания электрического напряжения можно с помощью обычного микрофона.

Изменению электрического напряжения можно поставить в соответствие изменение магнитного поля ленты в магнитофоне или звукового потока от звуковой дорожки кинопленки при оптической записи. Но каким бы ни был новый «носитель» информации, изменение его свойств всегда должно быть пропорционально изменению давления воздуха в исходной звуковой волне.



Второй способ получения информации о звуке предполагает измерение значения давления в звуковой волне. Возникающая при этом последовательность чисел - цифровой сигнал - есть не что иное, как новое выражение исходных звуковых колебаний. Естественно, чтобы правильно передать форму сигнала, эти измерения надо проводить достаточно часто - не менее нескольких раз за период самой высокочастотной составляющей звукового сигнала.

Цифровая система записи (передачи) звука в самом общем виде состоит из цифрового микрофона (измерителя звукового давления), цифрового магнитофона или передатчика (для записи или передачи большого массива чисел) и цифрового громкоговорителя (преобразователя последовательности чисел и изменение звукового давления). В реальных цифровых системах записи (передачи) звука пока используют аналоговые электроакустические преобразователи - микрофоны и громкоговорители (динамики), а цифровой обработке подвергают электрические сигналы звуковой частоты.

В общем случае цифровые сигналы представляют собой импульсы прямоугольной формы, которые с помощью логических элементов включают и выключают в электрической схеме различные цепи. В отличие от аналоговой электроники, оперирующей формой и напряжением сигнала, цифровая электроника использует двоичные сигналы - сигналы с дискретными уровнями напряжения, соответствующими «0» и «1».

К амплитуде импульса (уровню напряжения) цифрового сигнала обычно не предъявляется жестких требований при условии, что напряжение надежно перекрывает уровни «0» и «1», которые обычно находятся в диапазоне от 0 до +5 В. Например, за уровень сигнала, соответствующий «1», может быть принято напряжение в интервале от 2,4 до 5,2 В, а за уровень «0» - напряжение в интервале от 0 до 0,8 В.

Для подсчета двоичных сигналов наиболее удобно пользоваться двоичной системой счисления, которая также оперирует только двумя цифрами - 0 и 1. В любой системе счисления, в том числе и двоичной, важное место занимает понятие разряда. Разряд представляет собой степень (число), в которую возводится основание системы счисления. Номера разрядов в числе отсчитываются справа налево, а нумерация начинается с нуля.

Наибольшее число, которое может быть записано в двоичной системе исчисления (впрочем, как и в любой другой), зависит от количества используемых разрядов. Так, при использовании одного разряда можно записывать лишь два числа 0 и 1. Если использовать 2 разряда, можно записывать числа в интервале от 0 до 3. В случае, если используется 8 разрядов, можно оперировать числами от 0 до 255, а при 16 разрядах диапазон возможных значений числа будет иметь границы от 0 до 65 535.

Преобразование аналогового сигнала в цифровой практически в любой системе практической записи звука протекает в несколько этапов. Сначала аналоговый звуковой сигнал падает на аналоговый фильтр, который ограничивает полосу частот сигнала и устраняет помехи и шумы сигнала. Затем из аналогового сигнала с помощью схемы выборки/хранения выделяются отсчеты: с определенной периодичностью осуществляется запоминание мгновенного уровня аналогового сигнала. Далее отсчеты поступают в аналого-цифровой преобразователь (АЦП), который преобразует мгновенное значение каждого отсчета в цифровой код, или числа. Полученная последовательность бит цифрового кода, собственно, и является звуковым сигналом в цифровой форме. Таким образом, в результате преобразования непрерывный аналоговый звуковой сигнал превращается в цифровой - дискретный по времени и величине.

Наверное, каждый, кто хоть раз слушал SDR приемник или трансивер, не смог остаться равнодушным к его приему, а особенно к удобству, которое проявляется в том, что станции на диапазоне можно не только слышать, но и видеть. Обзор диапазона на панораме SDR трансивера позволяет быстро и визуально находить станции в полосе приема, что значительно ускоряет поиск корреспондентов во время контестов, да и при повседневной работе в эфире. С помощью «водопада» визуально отслеживается история сигналов на диапазоне и можно легко осуществить переход на интересного корреспондента. К тому же сама панорама показывает нам АЧХ принимаемых станций, их полосу и ширину излучения, что позволяет оперативно находить свободный участок на диапазоне для вызова других радиолюбителей.
Это только если говорить о визуальной части SDR, но также не стоит забывать и об обработке сигналов, как на прием, так и на передачу. Полный контроль ширины и всего, что находится в полосе приема. При правильном выборе необходимых параметров в пунктах меню настроек, сигнал на передачу тоже звучит великолепно.
Но есть одно обстоятельство, чтобы заставить работать SDR, нужны дополнительные устройства: собственно компьютер с качественной звуковой картой, на которой происходит основная обработка сигнала и хороший монитор с высоким разрешением экрана. Естественно, необходимо соответствующее программное обеспечение к нему и к SDR трансиверу, которое стоит не дёшево. Всё это уже влечет за собой определенные специфические требования к знаниям компьютера у радиолюбителя. Что не всегда, и не у всех, к сожалению присутствует.
Имеется еще один недостаток. Если на прием этого не заметно, то на передачу, в связи со специфической обработкой звукового сигнала в компьютере, возникает значительная задержка сигнала более 150 мс, что полностью исключает нормальную работу самоконтроля во всех видах излучения. Спасает только дополнительный контрольный приемник или товарищ, у которого тоже имеется SDR трансивер, который сделает запись принимаемого сигнала.
В настоящее время, с появлением поколения доступных микропроцессоров от STM, появилась возможность разработки устройств, способных частично заменить некоторые основные функции больших компьютеров. А именно, обработка DSP звука и управление трансивером, а также графическое отображение информации на дисплее трансивера.
Как итог, основные узлы такого трансивера, позволяют отказаться от внешнего компьютера . Но при этом, как на внешнем компьютере, сохраняется удобный сервис по управлению трансивером, различные режимы записи сигналов, как на прием, так и на передачу, с последующим воспроизведением записей через наушники или в эфир во время передачи, сохранение необходимой информации на внешней SD-карте, которая выводится на собственный большой дисплей с широкой полосой обзора, а так же обработка DSP и формирование сигнала со всеми основными видами излучения. Такие трансиверы обеспечивают качественный прием сигнала, высокую крутизну фильтров с плавными настраиваемыми границами, автоматический Notch фильтр. В них на передачу применяется многополосные графические эквалайзеры, компрессоры, ревербераторы, а самое главное, получается минимальное время задержки. При наличии внешнего синтезатора, контроллеры трансиверов легко работают с аналоговыми SDR. В этих современных трансиверах широко применяются радиотракты HiQSDR и HiQSDR-mini 2.0, которые управляются отдельной шине SPI, или через плату DSP по основной шине SPI при минимуме связующих проводов.
Ещё несколько лет назад начался выпуск SDR-трансиверов, работающих по принципу непосредственного преобразования радиочастотного сигнала на звуковую ПЧ, в которых в одном корпусе располагается упрощённая (по сравнению с классической схемой) плата радиоканала и специализированный компьютер. Основной упор здесь делается на программное обеспечение. Основная стоимость готового изделия так же определяется стоимостью софта. Оборудование Flex и Sun SDR построены именно по такому принципу.
В настоящее время принцип обработки сигналов на основе методов ЦОС (DSP) перешёл к следующему этапу своей эволюции. Появился новый метод прямой оцифровки сигнала с антенны с последующим непосредственным формированием сигнала из цифры, позволяющий избавиться практически от всех видов проблем присущих как классике, так и SDR-технологиям с аппратаной обработкой сигнала.
Радиоприёмники и трансиверы с прямой оцифровкой сигнала имеют аббревиатуру DDC (от Digital Down-Converter). Обратное преобразование из цифры в аналог имеют аббревиатуру DUC (от Digital Up-Converter). Речь идёт о цифровом преобразовании сигнала программным методом. Сразу нужно отметить, что аббревиатура SDR (Software Define Radio) - программно определяемое радио - это только общее определение класса технологий обработки сигналов, куда входит и DDC - архитектура, как один из методов.

Уже сегодня, с появлением поколения доступных микропроцессоров, появилась возможность разработки устройств, способных частично заменить некоторые основные функции больших компьютеров. А именно, обработка DSP звука и управление трансивером, а также графическое отображение информации на дисплее трансивера. В архитектуре DDC мгновенно оцифровывается весь спектр сигналов от 0 Гц до частот, которые способна обработать микросхема АЦП. Самые современные микросхемы АЦП на сегодня могут работать в полосе до 1ГГц, но их стоимость сегодня пока очень высока. В тоже время, наиболее ходовые и относительно дешёвые микросхемы АЦП оцифровывают спектр полосой от 0 Гц до 60...100 МГц, что для радиолюбительских задач вполне подходит. После оцифровки спектра сигналов в полосе 0 Гц - 30...60 МГц на выходе микросхемы АЦП получается очень большой цифровой поток данных, который в дальнейшем обрабатывается высокоскоростными микросхемами ПЛИС. В них программным способом реализован алгоритм DDC/DUC, т.е. цифровой понижающий или повышающий конвертер.
Цифровой понижающий конвертер производит выборку спектра необходимой полосы и передачу его в компьютер для обработки - т.е. создаётся цифровой поток существенно меньшей полосы и скорости. В компьютере происходит программная обработка потока методами ЦОС и конечная демодуляция сигнала.
В практической деятельности очень редко возникает необходимости работать со всем спектром сигналов в полосе 0 Гц - 30...60 МГц. Максимальные полосы, которые нам нужны для обработки - это 10...50 кГц для демодуляции АМ, ЧМ сигналов и 3...5 кГц для SSB сигналов.
Этот самый передовой метод обработки сигналов был реализован в радиолюбительских трансиверах TULIP-DSP и отечественном аналоге – Тюльпан-DDС/DUC.

Подобный принцип формирования сигнала применяется и в трансиверах одной известной фирмы, начавший выпуск новых моделей ещё в 2015 году. Фрагмент структурной схемы такого трансивера представлен ниже.

Если раньше, ещё несколько лет назад, даже в таких передовых трансиверах типа ICOM IC-756Pro3 и IC-7600 применяется метод последовательной развёртки спектра и был заметен процесс обновления картинки - т.е. быстрое сканирование, то теперь наблюдение и обработка сигнала происходит в комплексе, параллельно, так как перестройка частоты происходит мгновенно программным методом. За счёт того, что оцифровывается сразу большой частотный участок 30...60 МГц, не теряя настройку на текущую радиостанцию, появляется возможность увидеть, что происходить на соседнем участке спектра. Мало того, вызвав второй виртуальный приёмник вы одновременно можете слышать, о чём говорят на одном и втором диапазоне. Но и два приёмника это не предел. Есть возможность вызвать три, пять, десять... сколько угодно приёмников. Микшируя их звук определённым образом, вы в курсе происходящих событий на диапазонах. А графика «облаком» позволит быстро выбрать нужную станцию.
Тоже самое относится и к отображению спектра. На практике, редко когда нужен сразу весь участок 30...60 МГц. При необходимости, можно сравнительно легко выделить из общего цифрового потока второй, третий, четвёртый и вообще, сколько необходимо малых потоков и передать их в компьютер, создав тем самым одновременно несколько каналов приёма. Таким методом реализуются два, три или сколько нужно «виртуальных приёмников» во всей полосе оцифровки. Например, создаём отдельную панораму на диапазон 40 метров, отдельную на 20-ти метровый диапазон и на остальные диапазоны..., размещаем их на отдельном мониторе и вот мы получили возможность наблюдать в реальном формате времени за условиями прохождения на выбранных нами участках.

С одной стороны, наличие зеркальных полос - это недостаток. Так как понятие ДД относится ко всему спектру оцифровки, то значительно разгрузить вход АЦП можно, уделив внимание входным цепям приёмника, которые лучше делать высокодобротными и перестраиваемыми. Как альтернативный вариант – применение во входных цепях ФНЧ с частотой среза половины частоты тактирования или диапазонных полосовых фильтров. Они могут дополнительно ослаблять сильные внеполосные сигналы, отстоящие от рабочей полосы достаточно далеко. При этом, теряется возможность обзора всего диапазона оцифровки. Такие методы предварительной селекции оправданы, в случае, если планируется использовать DDC-приёмник совместно с большими антеннами или в местности со сложной помеховой обстановкой.
С другой стороны - этот недостаток предоставляет технологическую возможность простыми средствами реализовать не только приём на КВ диапазоне, но и на УКВ и даже на ДЦВ диапазонах. Необходимо всего лишь делать сменные диапазонные полосовые фильтры с МШУ, полосами равными половине тактовой частоты.
Например, в некоторые DDC приёмники ставят отключаемый фильтр на СВ-ДВ диапазон, а в одном из DDC-приёмников компании WiNRADiO и DDC-приёмнике Perseus, есть гибко конфигурируемые узкополосные фильтры.
Ещё каких-нибудь 20 лет назад ни о чём подобном мы не могли даже и мечтать, когда панорамная приставка к трансиверу была размером в 2 раза больше самого трансивера и стоила в 5-10 раза дороже. Про сервис с качеством и говорить не приходится. Появившаяся в начале 2000-ых годов технология SDR позволила взглянуть на эфир и услышать его совсем иначе. Мы увидели настоящий живой эфир! Не статическую «замороженную» картинку после медленного сканирования, а именно, живой эфир в реальном времени.
Если, для того что бы увидеть урезанную панораму других диапазонов в первых SDR трансиверах с аппаратным преобразованием сигналов, необходимо иметь отдельный приёмный тракт для каждого диапазона, то в приёмном тракте, выполненным по современной технологии DDC доступен как любой из участков диапазона, так и весь диапазон, и при этом параллельно с отдельными участками его участками. Реализация всех этих возможностей возможна только благодаря методам ЦОС и прямой оцифровки сигнала.
Касательно радиолюбительской тематики, одной из самых востребованных функций в настоящее время и ближайшем будущем - это пространственная селекция сигналов и методы фазового подавления шумов. На сегодня существует фазовый метод селекции сигналов и подавления шумов, реализуемый аппаратно. Кроме того, используя математические алгоритмы, легко реализуемы любые функции по вычитанию мешающих и сложению полезных сигналов, образуемые парой, четвёркой или большим количеством АЦП.
С применением этих современных разработок появилась возможность дистанционного управления трансивером и удалённая работа в эфире. Современные способы передачи информации способны пропускать достаточно большие потоки данных и практически без потерь. Общий поток информации из/в трансивер совсем получается небольшой. Используя IP-стек, появляется возможность использовать трансивер как сегмент сети даже без использования компьютера. Установив трансивер за пределами большого города в достаточно тихой местности, - вы можете иметь доступ к радиоэфиру не выходя из своей квартиры. Организовав гостевой доступ к трансиверу, вы предоставляете возможность друзьям поработать в эфире. Ещё одной полезной функцией, применяемой специальными службами, является возможность записывать весь радиоэфир, или заданные куски радиоэфира, на винчестер компьютера с отсроченной обработкой. Эта функция позволяет быстро проводить статистическую обработку сигналов, вести поиск и наблюдение за целевыми сигналами, а также совершать множество операций, о которых знать обычному пользователю не положено.

Вы можете выбрать интересующие Вас рации в

Несмотря на то, что большую часть внешней информации мы усваиваем с помощью зрения, звуковые образы для нас ничуть не менее важны, а часто даже и более. Попробуйте посмотреть кино с выключенным звуком – через 2-3 минуты вы потеряете нить сюжета и интерес к происходящему, каким бы большим ни был экран и качественным изображение! Поэтому в немом кино за кадром играл тапер. Если же убрать изображение и оставить звук, кино вполне можно «слушать» как увлекательную радиопостановку.

Слух доносит до нас информацию о том, чего мы не видим, поскольку сектор визуального восприятия ограничен, а ухо улавливает звуки, доносящиеся со всех сторон, дополняя зрительные образы

Слух доносит до нас информацию о том, чего мы не видим, поскольку сектор визуального восприятия ограничен, а ухо улавливает звуки, доносящиеся со всех сторон, дополняя зрительные образы. При этом наш слух с большой точностью может локализовать невидимый источник звука по направлению, расстоянию, скорости перемещения.

Звук научились преобразовать в электрические колебания задолго до изображения. Этому предшествовала механическая запись звуковых колебаний, история которой началась еще в 19 веке.

Ускоренный прогресс, включая возможность передачи звука на расстояние, стал возможен благодаря электричеству, с появлением усилительной техники, акустоэлектрических и электроакустических и преобразователей – микрофонов, звукоснимателей, динамических головок и прочих излучателей. Сегодня звуковые сигналы передаются не только по проводам и через эфир, но и по оптоволоконным линиям связи, в основном в цифровом виде.

Акустические колебания преобразуются в электрический сигнал обычно с помощью микрофонов. Любой микрофон имеет в своем составе подвижный элемент, колебания которого порождают ток или напряжение определенной формы. Наиболее распространенный тип микрофона – динамический, представляющий собой «динамик наоборот». Колебания воздуха приводят в движение мембрану, жестко связанную со звуковой катушкой, находящейся в магнитном поле. Конденсаторный микрофон, по сути, и есть конденсатор, одна из обкладок которого колеблется в такт со звуком, а вместе с ней изменяется емкость между обкладками. В ленточных микрофонах используется тот же принцип, только одна из пластин свободно подвешена. Схож с конденсаторным электретный микрофон, пластины которого в процессе колебаний сами вырабатывают электрический заряд, пропорциональный амплитуде колебаний. Многие модели микрофонов имеют встроенный усилитель (уровень сигнала непосредственно с акусто-электрического преобразователя очень мал). В отличие от микрофона, звукосниматель электромузыкального инструмента регистрирует колебания не воздуха, а твердого тела: струны или деки инструмента. Головка звукоснимателя считывает канавку грампластинки с помощью иглы, механически соединенной с подвижными катушками, находящимися в магнитном поле, либо магнитами, если катушки неподвижны. Либо колебания иглы передаются на пьезоэлемент, который при механических воздействиях вырабатывает электрический заряд. В магнитной записи звуковой сигнал записывается на магнитную ленту, а затем считывается специальной головкой. Наконец, в кинематографе традиционно была принята оптическая запись: с краю пленки наносилась непрозрачная звуковая дорожка, ширина которой менялась в такт со сигналом, и при протягивании пленки через проекционный аппарат электрический сигнал снимался с помощью фотосенсора.

В синтезаторах звук рожается непосредственно в виде электрических колебаний, здесь отсутствует первичное преобразование акустических волн в электрический сигнал.

Современные источники звука осень разнообразны, и все большее распространение получают цифровые носители: компакт-диски, DVD, хотя сохраняются еще и виниловые пластинки. Мы продолжаем слушать радио, как эфирное, так и кабельное (радио-точки). Звук сопровождает телепередачи и кинофильмы, не говоря уже о таком привычном явлении, как телефония. Все больший удельный вес в мире аудио получает компьютер, позволяющий с удобством архивировать, комбинировать и обрабатывать звуковые программы в виде файлов. В век цифровых технологий оцифрованная речь и музыка передается по цифровым каналам, включая сеть Интернет, без серьезных потерь на транспортировку. Это обеспечивается цифровым кодированием, и потери возникают исключительно из-за сжатия, которое чаще всего при этом используется. Однако на цифровых носителях его либо нет вовсе (CD, SACD), либо применяются алгоритмы сжатия звука без потерь (DVD Audio, DVD Video). В остальных случаях степень сжатия определяется требуемым уровнем качества фонограммы (файлы MP3, цифровая телефония, цифровое телевидение, некоторые типы носителей).

Рис. 1. Преобразование акустических звуковых колебаний в электрический сигнал

Обратное преобразование из электрических колебаний в акустические осуществляются с помощью громкоговорителей, встроенных в радиоприемники и телевизоры, а также отдельных акустических систем, головных телефонов.

Звуком называют акустические колебания в диапазоне частот от 16 Гц до 20 000 Гц

Звуком называют акустические колебания в диапазоне частот от 16 Гц до 20 000 Гц. Ниже (инфразвук) и выше (ультразвук) человеческое ухо не слышит, да и в пределах звукового диапазона чувствительность слуха весьма неравномерна, ее максимум приходится на частоту 4 кГц. Чтобы слышать звуки всех частот одинаково громко, нужно воспроизводить их с разным уровнем. Такой прием, называемый тонкомпенсацией, часто реализуется в бытовой аппаратуре, хотя результат его нельзя признать однозначно положительным.


Рис. 2. Кривые равной громкости
(Нажмите на изображение для увеличения)

Физические свойства звука обычно представляются не в линейных, а в относительных логарифмических величинах – децибелах (дБ), поскольку это гораздо нагляднее в цифрах и компактнее на графиках (в противном случае пришлось бы оперировать с величинами, имеющими множество нулей до запятой и после, и вторые с легкостью потерялись бы на фоне первых). Отношение двух уровней A и B в дБ (скажем, напряжения или тока) определяется как:

С u [дБ] = 20 lg A/B. Если же речь идет о мощностях, то С p [дБ] = 10 lg A/B.

Кроме частотного диапазона, определяющего чувствительность человеческого слуха к высоте звука, существует также понятие диапазона громкостей, который показывает чувствительность уха к уровню громкости и охватывает интервал от самого тихого звука, различимого слухом (порог чувствительности), до самого громкого, за которым лежит болевой порог. Порог чувствительности принят как звуковое давление в 2 х 10 -5 Па (Паскаль), а болевой порог – давление, в 10 миллионов раз большее. Иными словами, диапазон слышимости, или отношение давления самого громкого звука, к самому тихому, составляет 140 дБ, что заметно превосходит возможности любой аудио аппаратуры ввиду ее собственных шумов. Только цифровые форматы высокого разрешения (SACD, DVD Audio) подбираются к теоретическому пределу динамического диапазона (отношение самого громкого звука, воспроизводимого аппаратурой, к уровню шума) 120 дБ, компакт-диск обеспечивает 90 дБ, виниловая пластинка – порядка 60 дБ.


Рис. 3. Диапазон чувствительности слуха

Только цифровые форматы высокого разрешения (SACD, DVD Audio) подбираются к теоретическому пределу динамического диапазона

Шумы всегда присутствуют в звуковом тракте. Это как собственные шумы усилительных элементов, так и внешние наводки. Искажения сигнала делятся на линейные (амплитудные, фазовые) и нелинейные, или гармонические. В случае линейных искажений спектр сигнала не обогащается новыми компонентами (гармониками), изменяются лишь уровень или фаза уже существующих. Амплитудные искажения, нарушающие изначальные соотношения уровней на разных частотах, приводят к слышимым искажениям тембра. Долгое время считалось, что фазовые искажения некритичны для слуха, однако на сегодня доказано обратное: и тембр, и локализация звука в значительной мере зависимы от фазовых соотношений частотных компонентов сигнала.

Любой усилительный тракт нелинеен

Любой усилительный тракт нелинеен, поэтому всегда возникают гармонические искажения: новые частотные компоненты, отстоящие по частоте в 3, 5, 7 и т.д. от порождающего их тона (нечетные гармоники) или в 2, 4, 6 и т.д. раз (четные). Порог заметности гармонических искажений сильно варьирует: от нескольких десятых и даже сотых долей процента до 3-7%, в зависимости от состава гармоник. Четные гармоники менее заметны, поскольку находятся в консонансе с основным тоном (разница по частоте в два раза соответствует октаве).

Помимо гармонических, имеют место интермодуляционные искажения, представляющие собой разностные продукты частот спектра сигнала и их гармоник. Например, на выходе усилителя, на вход которого подано две частоты 8 и 9 Гц (при достаточно нелинейной его характеристике) появится третья (1 кГц), а также целый ряд других: 2 кГц (как разность вторых гармоник основных частот) и т.д. Интермодуляционные искажения особенно неприятны на слух, поскольку порождают множество новых звуков, включая диссонансные по отношению к основным.

То, что сможет услышать аудиофил и не только услышать, но и объяснить звукорежиссер, может оказаться совершенно незаметным для обычного слушателя

Шумы и искажения в значительной степени маскируются сигналом, однако они и сами маскируют сигналы малого уровня, которые исчезают или теряют отчетливость. Поэтому чем выше отношение сигнал/шум, тем лучше. Фактическая чувствительность к шумам и искажениям зависит от индивидуальных особенностей слуха и его натренированности. Уровень шумов и искажений, не влияющий на передачу речи, может быть абсолютно неприемлемым для музыки. То, что сможет услышать аудиофил и не только услышать, но и объяснить звукорежиссер, может оказаться совершенно незаметным для обычного слушателя.

ПЕРЕДАЧА АНАЛОГОВОГО АУДИО

Традиционно аудио сигналы передавались по проводам, а также эфиру (радио).

Различают небалансную линию передачи (классическая проводная) и балансную. Небалансная имеет в своем составе два провода: сигнальный (прямой) и обратный (земля). Такая линия весьма чувствительна к внешним помехам, поэтому для передачи сигнала на большие расстояния не подходит. Часто реализуется с помощью экранированного провода, экран при этом соединяется с землей.


Рис. 4. Небалансная экранированная линия

Балансная линия предполагает три провода: два сигнальных, по которым течет один и тот же сигнал, но в противофазе, и землю. На приемной стороне синфазные помехи (наведенные на оба сигнальных провода) взаимно вычитаются и полностью исчезают, а уровень полезного сигнала удваивается.


Рис. 5. Балансная экранированная линия

Небалансные линии обычно применяются внутри приборов и при небольших расстояниях, в основном в пользовательских трактах. В профессиональной же сфере господствует балансная.

На рисунках точки подключения экрана показаны условно, поскольку их приходится каждый раз подбирать «по месту» для достижения наилучших результатов. Чаще всего экран подключается только на стороне приемника сигнала.

Небалансные линии обычно применяются внутри приборов и при небольших расстояниях, в основном в пользовательских трактах. В профессиональной же сфере господствует балансная

Аудиосигналы нормируются по уровню действующего напряжения (0,707 от амплитудного значения):

  • микрофонный 1-10 мВ (для микрофонов без встроенного усилителя),
  • линейный 0,25-1 В, обычно 0,7 В.

На выходе усилителя мощности, с которого сигнал поступает на громкоговорители, его уровень гораздо выше и может достигать (в зависимости от громкости) 20-50 В при токах до 10‑20 А. Иногда – до сотен вольт, для трансляционных линий и озвучивания открытых пространств.

Используемые кабели и разъемы:

  • для балансных линий и микрофонов – экранированная пара (часто витая), 3-контактные разъемы XLR или клеммы, винтовые или зажимные;


Рис. 6. Разъемы для балансных линий: клеммы и XLR

  • для небалансных линий – экранированный кабель, разъемы RCA («тюльпан»), реже DIN (а также ГОСТ), а также различные штекеры;


Рис. 7. Разъемы для небалансных линий: RCA, 3,5-мм и 6,25-мм штекеры

  • для мощных сигналов для громкоговорителей – неэкранированные (за редким исключением) акустические кабели большого сечения, клеммы или зажимы, разъемы типа «банан» или «игла»


Рис. 8. Разъемы акустических кабелей

Качество разъемов и кабелей играет ощутимую роль, особенно в высококачественных аудио системах

Качество разъемов и кабелей играет ощутимую роль, особенно в высококачественных аудио системах. Имеют значение материалы проводника и диэлектрика, сечение, геометрия кабеля. В самых дорогих моделях межблочных и акустических кабелей применяется сверхчистая медь и даже цельное серебро, а также тефлоновая изоляция, отличающаяся минимальным уровнем диэлектрической абсорбции, увеличивающей потери сигнала, причем неравномерно по полосе частот. Рынок кабельной продукции очень разнообразен, часто разные модели одинакового качества отличаются друг от друга лишь ценой, причем во много раз.

Любые кабели характеризуются потерями аналогового сигнала, которые растут с ростом частоты и расстояния передачи. Потери определяются омическим сопротивлением проводника и контактов в разъемах, а также распределенными реактивными составляющими: индуктивностью и емкостью. По сути, кабель представляет собой фильтр низких частот (режет высокие).

Помимо передачи на разные расстояния, сигналы часто приходится разветвлять и коммутировать. Коммутаторы (селекторы входов) являются неотъемлемой частью многих компонентов аудиотракта, как профессионального, так и пользовательского. Существуют и специализированные усилители-распределители, разветвляющие сигнал и обеспечивающие согласование с линией передачи и другими компонентами по уровню и импедансам (а также часто компенсирующих спад на высоких частотах) и коммутаторы, обычные (несколько входов и один выход) и матричные (множество входов и выходов).

ОБРАБОТКА АНАЛОГОВОГО АУДИО

Любая обработка аналогового аудиосигнала сопровождается определенными потерями его качества (возникают частотные, фазовые, нелинейные искажения), однако она необходима. Основные виды обработки следующие:

  • усиление сигнала до уровня, нужного для передачи, записи или воспроизведения громкоговорителем: подав сигнал с микрофона на динамик, мы ничего не услышим: требуется предварительно усилить его по уровню и мощности, обеспечив при этом возможность регулировки громкости.


Рис. 9

  • фильтрация по частотам: от полезного звукового диапазона (20 Гц – 20 кГц) отсекают инфразвук, который на определенных частотах вреден для здоровья, и ультразвук. Во многих случаях диапазон намеренно сужают (речевой телефонный канал имеет полосу от 300 Гц – 3400 Гц, существенно ограничена полоса частот метровых радиостанций). Для акустических систем, имеющих как правило 2-3 полосы, также необходимо разделение, которое осуществляется обычно в фильтрах кроссоверов уже на уровне усиленного (мощного) сигнала.


Рис. 10. Схема кроссовера для трехполосной акустической системы


Рис. 11. Пример прибора-эквалайзера

  • подавление шумов: существуют специальные схемы динамического шумопонижения, которые анализируют сигнал и сужают полосу пропорционально уровню и частоте ВЧ-составляющих («денойзеры», «дехиссеры»). При этом шум, находящийся выше полосы сигнала, отрезается, а оставшийся более или менее маскируется самим сигналом. Подобные схемы всегда приводят к весьма заметной на слух деградации сигнала, но в отдельных случаях их применение уместно (например, при работе с записанной речью или в переговорных радиостанциях). Для аналоговой звукозаписывающей техники также используются шумоподавители на основе компрессоров/экспандеров («компандерные», например, системы Dolby B, dbx), работа которых на слух менее заметна.
  • воздействие на динамический диапазон: для того чтобы воспроизведение музыкальных программ на обычных бытовых системах, включая автомобильные магнитолы, было достаточно сочным и выразительным, динамический диапазон сжимают, делая звучание тихих звуков более громким. В противном случае, не считая отдельных всплесков фортиссимо (на классической музыке), придется слушать тишину из динамиков, особенно с учетом шумной окружающей обстановки. Для этой цели служат приборы, называемые компрессорами. В некоторых случаях, наоборот, требуется расширить динамический диапазон, тогда применяются экспандеры. А чтобы исключить превышение максимального уровня, которое приведет к клиппированию (ограничение сигнала сверху, сопровождаемое очень высокими нелинейными искажениями, воспринимаемыми как хрип), в студиях используются лимитеры. Они как правило обеспечивают «мягкое» ограничение, а не просто срезают верхушки сигнала;

Рис. 12. Пример студийного процессора динамической обработки звука

  • спецэффекты для студий, ЭМИ и пр.: в распоряжении звукорежиссеров и музыкантов имеется большое количество спец-техники для придания звучанию нужной окраски или получения определенного эффекта. Это различные дистортеры (звук электрогитары становится хриплым, зернистым), приставки вау-вау (модуляция по амплитуде, вызывающая характерный «квакающий» эффект), энхенсеры и эксайтеры (приборы, влияющие на окраску звука, в частности, могущие придавать звучанию «ламповый» оттенок); фленжеры, хорусы и т.д.


Рис. 13. Примеры процессоров и приставок для электрогитар

  • смешивание звуков, эхо/реверберация: запись на студиях обычно ведется в многоканальном виде, затем с помощью микшеров фонограмма сводится в нужное количество каналов (чаще всего 2 или 6). При этом звукорежиссер может «выдвинуть вперед» тот или иной солирующий инструмент, записанный на отдельной дорожке, изменить соотношение громкостей разных дорожек. Иногда на сигнал накладываются многократные копии меньшего уровня с определенным сдвигом по времени, тем самым имитируется естественная реверберация (эхо). В настоящее время подобные и прочие эффекты достигаются в основном с помощью сигнальных процессоров, обрабатывающих цифровой сигнал.


Рис. 14. Современный микшерный пульт

ЗАПИСЬ АНАЛОГОВОГО АУДИО

Считается, что механическая запись звука была впервые реализована Эдисоном в 1877 году, когда он изобрел фонограф – валик, покрытый слоем мягкой станиоли, на который иглой, передающей колебания воздуха, наносился след (впоследствии вместо станиоли использовался воск, а сам метод стали называть глубинной записью, поскольку дорожка модулировалась по глубине). Однако в том же году француз Шарль Кро подал заявку в Академию наук по поводу своего изобретения – звук записывался на плоском стеклянном диске, покрытым сажей, с помощью соединенной с мембраной иглы, получалась поперечная дорожка, затем диск предполагалось просвечивать и снимать с него фотокопии для тиражирования (сам способ еще предстояло разработать). В конце концов поперечная запись, которая оказалась намного совершеннее глубинной, дала начало грамзаписи. В мире появились три компании, серийно выпускавших пластинки (CBS в Америке, JVC в Японии, Odeon в Германии – эта компания подарила миру двустороннюю пластинку) и аппараты для их воспроизведения. От Дойче Граммофон (Германия) произошло название «граммофон», от Пате (Франция) – патефон. Затем начали производить портативные патефоны с раструбом на шарнире, с электрическим двигателем вместо ручного привода, позже – с электромагнитными адаптерами. Пластинки становились все совершеннее, вмещали больше материала по времени звучания, расширялся диапазон частот, первоначально ограниченный 4 кГц. На смену хрупкому шеллаку пришел винилит, а недолговечные стальные иглы уступили место сапфировым, затем и алмазным. Началась эпоха стерео: в одной канавке нарезались две дорожки под углом в 45°. К началу 80-х годов прошлого века, когда наметилась глобальный переход к цифровому формату звука, виниловая пластинка подошла в апогее своего развития.


Рис. 15. Граммофон, патефон, электропроигрыватель

Магнитная запись более совершенна и издавна применялась в студиях. Первый аппарат для магнитной записи – телеграфон – создал Вальдемар Паульсен (Дания) в 1878 году, причем запись велась на стальную проволоку (струну от фортепьяно). В 20-х годах 20 века появились магнитофоны, использовавшие магнитную ленту. Массовое производство магнитофонов началось в 40-х. Сначала появились магнитные ленты на целлюлозной, а затем на лавсановой основе. Запись аудиосигналов производится на продольные дорожки с помощью пишущей (или универсальной) головки с магнитным зазором. Лента протягивается вплотную к зазору головки, и на ней образуется дорожка остаточного намагничивания. Нелинейная часть характеристики «размывается» с помощью высокочастотного тока подмагничивания (обычно порядка 100 кГц), на который накладывается полезный сигнал. Студийные аналоговые магнитофоны наряду с цифровыми до сих пор применяются для первичной записи фонограмм. Бытовые бывают двух- и трехголовочными (отдельно записывающая, воспроизводящая и стирающая головки либо стирающая и универсальная). Иногда присутствуют две воспроизводящие головки, если предусмотрен реверс.

Даже при очень бережном отношении магнитная лента со временем начинает осыпаться

Магнитная лента обладает шумами, которые уменьшаются (частично выводятся за пределы слышимого диапазона) с ростом скорости протяжки. Поэтому студийные магнитофоны имеют скорость 38, в то время как бытовые катушечные – 19 и 9,5 см/с. Для бытовых кассетных магнитофонов была принята скорость 4,76 см/с. Шумы ленты эффективно подавляются с помощью компандерной системы Dolby B: при записи уровень высокочастотной части для слабых сигналов поднимается на 10 дБ, а при воспроизведении на столько же опускается.

Профессиональная аналоговая магнитная запись на высокой скорости обеспечивает очень высокое качество. Именно на магнитных мастер-лентах долгое время архивировались музыкальные записи, и с них фонограмма переносилась на виниловые пластинки с некоторой потерей качества. Однако даже при очень бережном отношении магнитная лента со временем начинает осыпаться, ей свойственно постепенное размагничивание, деформация, копир-эффект (соседние слои в рулоне взаимно намагничиваются), она подвержена влиянию внешних магнитных полей. Затруднен также быстрый поиск нужного фрагмента (хотя это неудобство относится скорее к бытовой сфере). Поэтому с появлением цифровых форматов компания Sony, владелец огромного архива записей CBS/Columbia, озаботившись проблемой сохранности бесценных оригиналов записей второй половины 20 века, разработала метод записи в формате дискретной широтно-импульсной модуляции (поток DSD – Direct Stream Digital, который в дальнейшем дал начало пользовательскому формату Super Audio CD). Если аналоговая магнитная запись обеспечивает сохранность фонограммы в несколько десятилетий при постепенно увеличивающихся потерях, то цифровые архивы вечны и выдерживают неограниченное количество копирований без какой-либо деградации. По этой, как и по многим другим причинам (сервисные преимущества, универсальность, огромные возможности обработки) все большее распространение нынче получают цифровые форматы аудио.

ПОЛУЧЕНИЕ ЦИФРОВОГО АУДИОСИГНАЛА

По теореме Котельникова-Шенона дискретный сигнал может быть впоследствии полностью восстановлен при условии, что частота дискретизации как минимум вдвое превосходит верхнюю частоту спектра сигнала

Цифровой сигнал получают из аналогового или синтезируют непосредственно в цифре (в электромузыкальных инструментах). Аналого-цифровое преобразование предполагает две основные операции: дискретизацию и квантование. Дискретизация – замена непрерывного сигнала на ряд отсчетов его мгновенных значений, взятых через равные промежутки времени. По теореме Котельникова-Шенона дискретный сигнал может быть впоследствии полностью восстановлен при условии, что частота дискретизации как минимум вдвое превосходит верхнюю частоту спектра сигнала. Затем отсчеты квантуются по уровню: каждому из них присваивается дискретное значение, ближайшее к реальному. Точность квантования определяется разрядностью двоичного представления. Чем выше разрядность, тем больше уровней квантования (2N, где N – число разрядов) и ниже шумы квантования – погрешности из-за округления до ближайшего дискретного уровня.


Рис. 16. Оцифровка аналогового сигнала и получение цифровых отсчетов

Формат CD предполагает частоту дискретизации 44,1 кГц и разрядность 16 бит. То есть получается 44 тысячи отсчетов в секунду, каждый из которых может принимать один из 2 16 = 65536 уровней (для каждого из стереоканалов).

Наиболее совершенными пользовательскими форматами аудио являются DVD Audio и Super Audio CD (SACD)

Помимо формата 44,1 кГц / 16 бит в цифровой записи применяются и другие. Студийная запись обычно производится с разрядностью 20-24 бит. Затем данные переводятся в стандартный CD-формат путем пересчета. Лишние биты затем отбрасываются либо (лучше) округляются, иногда подмешивается псевдослучайный шум для уменьшения шумов квантования (dither).

Наиболее совершенными пользовательскими форматами аудио являются DVD Audio и Super Audio CD (SACD). В DVD Audio принят алгоритм сжатия данных без потерь MLP, разработанный компанией Meridian. А SACD, в отличие от других форматов, использует не импульсно-кодовую модуляцию (ИКМ, или PCM), а однобитовое кодирование DSD-потока (дискретная широтно-импульсная модуляция). Диски SACD бывают однослойными и двухслойными (гибридными), с обычным CD-слоем.

Наиболее популярным аудио носителем на сегодня остается компакт-диск, несмотря на определенные ограничения по качеству звучания, отмечаемые аудиофилами. Причина их – в низкой частоте дискретизации: для точного восстановления сигналов, близких к верхней границе звукового диапазона, необходим фильтр, не реализуемый физически (его импульсная реакция захватывает область отрицательного времени). Это в определенной степени компенсируется с помощью цифровой фильтрации с повышением частоты дискретизации и разрядности. Для обеспечения бесперебойного воспроизведения в реальном времени данные на диске записываются с избыточным кодированием (код Рида-Соломона).

Цифровые носители, чатоты дискретизации и разрядности кодирования

Носитель Авторство Размеры Время звучания,
мин.
Кол. каналов Fs, кГц Разрядн., бит
CD-DA Sony,
Philips
120, 90 мм до 90 2 44,1 16
S-DAT кассета, лента 3,81 мм 2 32, 44,1, 48 16
R-DAT кассета, лента 3,81 мм 2, 4 44,1 12, 16
DASH лента 6,3, 12,7 мм 2…48 44,056,
44,1, 48
12, 16
DAT Alesis кассета
S-VHS
60 8 44,1, 48 16, 20
DСС Philips кассета 2, 4 32, 44,1,
48
16, 18
MiniDisk Sony 64 мм 74 2, 4 44,1 16
DVD
Audio
120 мм 5.1 192 24
SACD Sony,
Philips
120 мм 2, 5 2800 1

Для передачи цифрового звука нужна широкополосная линия связи, особенно для несжатого многоканального потока высокого разрешения.

ПЕРЕДАЧА ЦИФРОВОГО АУДИО

Линиями связи для передачи цифрового аудио могут служить кабели, оптические линии и радиоэфир.

Для передачи ИКМ-сигналов по проводным линиям разработаны интерфейсы AES/EBU (балансный, коаксиальный), S/PDIF (небалансный коаксиальный), обеспечивающие передачу нескольких сигналов (тактовую частоту, частоту следования цифровых слов, данные каналов) по одному проводу. Внутри аппаратов эти сигналы передаются по отдельности, на выходе транспортного механизма кодируются, а на входе цифро-аналогового преобразователя (в двухблочных системах) вновь разделяются в цифровом приемнике.

Как правило, для передачи цифрового аудио используется высококачественный коаксиальный кабель. Существуют также преобразователи S/PDIF для оптоволоконных линий: AT&T ST и Toslink (последний является стандартным для бытовой аппаратуры). А также – для использования витых пар в составе кабельных сетей Ethernet. Средой распространения сжатого аудио в виде архивированных файлов является и сеть Интернет.


Рис. 17. Оптический кабель с разъемом Toslink

Как любой цифровой сигнал, оцифрованное аудио распределяют и коммутируют с помощью специальных устройств – усилителей-распределителей, обычных и матричных коммутаторов.

Имеется фактор, отрицательно влияющий на цифровые сигналы и часто сводящий на нет практически все преимущества цифрового аудио перед аналоговым, в числе которых возможность многократного копирования, передачи и архивирования программ без потерь качества - речь идет о джиттере. Джиттер представляет собой дрожание фазы, или неопределенность момента перехода из 0 в 1 и наоборот. Происходит это из-за постепенной деформации прямоугольных импульсов с практически идеальными фронтами, которые становятся все более пологими из-за реактивных элементов кабелей, что и приводит к неопределенности момента перепада, хотя крутизна фронтов в каждом последующем цифровом устройстве полностью восстанавливается. С джиттером все современные цифровые устройства успешно борются с помощью блоков перетактирования (reclocking). Подробнее см. брошюру «Коммутация и управление сигналами».


Рис.18. Распределение и коммутация

Для передачи и записи на различные цифровые носители применяются сжатые форматы аудио: Dolby Digital (AC-3) и DTS. Это позволяет разместить на диске DVD Video емкостью 4,7 Гб полнометражный фильм с многоканальным звуковым сопровождением, а также разного рода дополнительные материалы. Формат Dolby Digital предлагает 5 независимых каналов: 2 фронтальных, 2 тыловых и 1 сабвуферный для спец-эффектов. Сжатие производится с помощью адаптивного алгоритма MPEG Audio, основанного на психоакустических особенностях восприятия звука и обеспечивающего минимальную заметность сжатия. Все это позволяет воссоздать полноценную трехмерную звуковую панораму. Однако для качественного воспроизведения музыки Dolby Digital подходит гораздо меньше, чем CD, обладая меньшим разрешением. Скорость потока в режиме Dolby Digital (отсчеты по каждому каналу передаются друг за другом) составляет 384-640 кбит/с, в то время как в обычном двухканальном формате CD – 1411,2 кбит/с. Формат Dolby Digital 5.1 неоднократно совершенствовался, в основном в направлении наращивания количества каналов. Сейчас доступен вариант DD 7.1, предполагающий 2 фронтальных, 2 боковых и 2 тыловых канала, не считая канала спецэффектов (известна также модификация DD 6.1 с одним тыловым каналом).

Формат DTS имеет меньшую степень сжатия и большую скорость потока данных – 1536 кбит/с. Поэтому он используется не только для кодирования многоканальных саундтреков на DVD Video, но для многоканальных аудиодисков. Формат DTS, помимо традиционного DTS 5.1, известен в модификациях DTS ES Discrete 6.1, а также нескольких матричных вариантах, в которых, как и в Dolby Pro Logic II, задействован принцип матрицирования дополнительных каналов, которые синтезируются на основе дополнительной информации, содержащейся в основных.

В компьютерной сфере и мультимедиа (на уровне пользователя) требуется компактность данных, поэтому здесь находят широкое применение сжатые форматы звука. Например, MP-3, Windows Media Audio, OGG Vorbis. Благодаря сжатию становится возможным быстро скачивать музыкальные файлы из сети Интернет, организовывать потоковый аудио сервис (WMA, Real Audio, Winamp).

ОБРАБОТКА ЦИФРОВОГО АУДИО

Обработка производится с помощью мощных DSP (сигнальных) процессоров, например Shark производства Analog Devices. Благодаря высокому быстродействию многие операции удается реализовать в реальном времени: например, изменение разрядности и тактовой частоты с интерполяцией, регулировка тембрального баланса, эквализация, подавление шумов, компрессия, экспандирование или ограничение динамического диапазона, спец-эффекты (эхо, разные типы звучания, например «стадион», «концертный зал» и пр.), микширование нескольких дорожек. Обычно сигнальные процессоры работают при высокой разрядности сигнала (например, 32 бита с плавающей децимальной точкой), что уменьшает набег ошибки в процессе сложных математических вычислений, которые производятся на основе быстрого преобразования Фурье, вычисления набора соответствующих коэффициентов и последующего перемножения.

Сигнальные процессоры по мере их распространения дешевеют, на сегодня их можно обнаружить любом ресивере или Surround-процессоре, где они выполняют самые разнообразные функции, включая декодирование форматов объемного звука, эквализацию и управление басом, калибровка каналов по амплитуде и фазе и т.д.

Сигнальные процессоры по мере их распространения дешевеют, на сегодня их можно обнаружить любом ресивере или Surround-процессоре

Но, как обычно, программные технологии обработки сигнала развиваются еще стремительнее, чем аппаратные. Все, что может сделать DSP-процессор, доступно с помощью специальных компьютерных приложений, причем в данном случае пользователь получает более широкий простор деятельности и гибкость самой программы, которая периодически обновляется и дополняется (хотя и программное обеспечение специализированных устройств в наше время чаще всего можно обновлять, скажем, через порт USB с компьютера или даже прямо из сети Интернет, с сайта производителя оборудования. Но такое обновление, конечно, возможно только в пределах одного поколения «железа», по мере устаревания которого приходится заменять модуль или весь аппарат). Компьютерных программ для глубокой обработки цифрового звука достаточно как для пользовательских, так и профессиональных целей (например, Adobe Audition). Основная часть студийной обработки производится на компьютере. Это очень удобно и эффективно, а, главное, позволяет не привязываться к реальному времени, делая доступными операции любой степени сложности без особых требований по быстродействию. Например, можно вручную вычистить фонограмму (скажем, снятую с реликтового винилового носителя) от щелчков или подвергнуть ее «интеллектуальной» обработке по избавлению от шумов, спектральный состав которых заранее определяется в паузах и на тихих фрагментах.

Сжатие цифрового аудио основано на психоакустических особенностях слуха и использует эффект маскировки более тихих звуков более громкими

Наконец, сжатие с целью уменьшения скорости потока данных или перенос на другую тактовую частоту с возможным изменением разрядности тоже производится как аппаратно, так и программно, на компьютере.

Существует несколько стандартных компьютерных форматов аудио, как без сжатия, так и с ним.

Наиболее распространенный несжатый формат – Microsoft Riff/Wave (расширение «.wav»). Данные кодируются 8 или 16 битами. Во втором (приемлемом для качественного аудио) случае и при частоте дискретизации 44,1 кГц одна минуты музыки занимает 5,3 МБ дискового пространства. Помимо самих данных, файл.wav содержит заголовок, описывающий общие параметры файла, и один или более фрагментов с дополнительной информацией о режимах и порядке воспроизведения, пометками, названиями и координатами различных участков сигнала.

В отличие от Riff/Wave, файлы RAW представляют собой данные, как они есть – без вспомогательной информации. Которая присутствует в стандартных для платформы Macintosh файлах Apple AIFF, схожих с WAV.

Сжатие цифрового аудио основано на психоакустических особенностях слуха и использует эффект маскировки более тихих звуков более громкими, при этом тихие просто отбрасываются, а «порог актуальности» маскируемых звуков определяется их удаленностью по частоте от маскирующих, а также другими параметрами.

Из форматов, предполагающих сжатие с потерями, самым популярным является MP3 (MPEG 1/2/2.5 Layer 3). Позволяет применять множество различных способов сжатия, стандартным является лишь способ кодирования уже сжатых данных. Возможен вариант с постоянным битрейтом, определяемым исходя из требуемых размеров файлов или уровня качества, или с переменным, когда битрейт меняется на разных фрагментах музыки, поддерживая уровень качества постоянным. В целом MP3 характеризуется весьма удовлетворительным звучанием на средних и высоких битрейтах, но на низких уступает другим форматам. Исключение составляет новая версия MP3 Pro, ориентированная именно на низкий битрейт и в связи с этим весьма затребованная в сетях Интернет.

WMA, или Windows Media Audio, успешно конкурируют с MP3 на низких битрейтах (например, музыка при 64 кбит/с в WMA субъективно звучит не хуже, чем в MP3 с битрейтом 128 кбит/с. Кроме этого, данный формат обеспечивает защитную кодировку от несанкционированного копирования.

Ogg Vorbis в целом схож с WMA и MP3, но отличается математическим аппаратом обработки и ориентирован на частоту дискретизации 48 кГц. К тому же может поддерживать не 2, а до 255 каналов звука. Битрейт до 512 кбит/с, при сжатии, на 20-5-% более эффективном, чем в MP3, музыка субъективно звучит лучше. Серьезный конкурент MP3 и WMA, хотя и в неравной борьбе с фирмами-гигантами.

AAC (Advanced Audio Coding) разработан на основе MP3 (и той же компанией – Институтом Фраунгофера), но отличается расширенными возможностями: поддерживает частоту дискретизации 96 кГц, до 48 каналов. Более высокое качество звука «оплачивается» относительно более медленной процедурой кодировки и повышенными требованиями к «железу» по быстродействию при воспроизведении. Одна из последних версий AAC под названием Liquid Audio, допускающая включение в поток данных не только «водяных знаков», как AAC, но и другой информации (об исполнителях, правообладании и пр.), в какой-то момент явилась серьезным претендентом на преемственность MP3.

Во многом похож на AAC японский формат VQF (SoundVQ), который скорее всего в скором времени исчезнет из поля зрения, хотя и поддерживается компанией Yamaha.

Цифровой звук можно записывать на различные носители. В основном оптические диски, хотя по логике вещей рано ли поздно на арене останется одна лишь флэш-память, для которой не требуется никаких приводов с моторчиками.

Магнитная цифровая запись на сегодня в основном остается в профессиональной сфере и все увереннее покидает бытовую

Тиражируют компакт-диски, как и прочие похожие носители (DVD, SACD), путем штамповки поликарбонатных заготовок с алюминиевых матриц, на которые наносятся питы – углубления. Кроме этого, при наличии обычного компьютера с пишущим CD (DVD) приводом музыкальные файлы различных форматов можно записывать на матрицы CD-R, CD-RW и т.д. Файлы также хранят на жестком диске компьютера или специального аудиосервера, в котором может быть создана обширная фонотека, причем степень сжатия файлов (от нуля) выбирается пользователем.

Магнитная цифровая запись на сегодня в основном остается в профессиональной сфере и все увереннее покидает бытовую. Оптический диск боле привлекателен для потребителя, чем кассета, даже притом, что она имеет небольшие размеры. Кроме этого, их массовой востребованности не способствовали сложные отношения с обладателями прав на музыкальный контент (как, впрочем, и в случае с DVD Audio и SACD). DAT-магнитофоны записывают цифровой звук без сжатия с высоким 3качеством. Существует несколько типов цифровых магнитофонов: со стационарными головками (S-DAT) и с вращающимися (R-DAT), записывающих сигнал на кассету; бобинный DASH, DAT, использующий кассеты S-VHS и поперечно-наклонную запись. Формат DCC (запись с сжатием в PASC) в настоящее время признан неперспективным. Магнитооптические диски MiniDisc используют запись с алгоритмом сжатия ATRAC.

ВОСПРОИЗВЕДЕНИЕ ЗВУКА

В конце любого аудиотракта присутствуют аналоговые электроакустические преобразователи – громкоговорители или наушники. Цифровые излучатели пока что находятся на стадии ранних идей. Усилители мощности также в основном аналоговые, хотя постепенно пробивают себе дорогу и цифровые (точнее, импульсные, работающие по принципу широтно-импульсной модуляции). Этот класс усилителей – D – обеспечивает небывало высокий по сравнению с аналоговыми КПД (порядка 90%), малые размеры и вес, отсутствие тепловыделения. Чтобы за усилителями класса D закрепилось прочное положение лидеров, необходимо, тем не менее, решить многие важные проблемы, и в первую очередь проблему фильтрации высокочастотных компонентов модулированного сигнала, уровень которых на выходе очень высок. Кроме этого, практически отсутствуют усилители класса D с цифровым входом: аналоговый сигнал подается на встроенный АЦП. Это, пожалуй, и есть основной фактор, тормозящий развитие данного направления: ведь основная ценность самой идеи не в высоком КПД, а в возможности организовать полностью цифровой аудиотракт без лишних преобразований и аналоговых линий передач. Тем более цифровой выход на проигрывателях DVD не редкость. В последнее время в данной области стали появляться новые разработки. Компания Tripath выпустила специальный процессор, управляющий параметрами импульсного усиления на основании анализа входного сигнала, который (в цифровой форме) на некоторое время задерживается в буфере. В частности, в зависимости от текущего спектра сигнала подбирается оптимальная с точки зрения последующей фильтрации тактовая частота. Такие усилители (их называют «интеллектуальными») дали начало новой категории – усилители класса T. Подробнее см. брошюру «Усиление сигналов».

На смену традиционным стерео- и моно- усилителям все чаще приходят многоканальные, чаще всего строенные в AV-ресиверы, где имеется также все необходимое для глубокой обработки многоканальных сигналов, декодирования и преобразования из одного формата в другой. Многоканальный звук становится все популярнее, причем не только в качестве сопровождения к кино, но и сам по себе.

Аналоговые сигналы являются первичным источником информации из окружающей среды. Оцифровка сигнала всегда сопровождается потерей качества. Это является недостатком цифровых технологий.

Оцифровка сигнала имеет три этапа: дискретизацию, квантование, кодирование. Их взаимодействие показано на рисунке.

Дискретизация

Кодирование

Квантование

Дискретизация – это разбиение аргументов на равные участки. В любой зависимости есть аргумент и есть функция. Аргумент задается, а функция изменяется в определенной зависимости от аргумента. Аргумент может быть один, может их быть и несколько. Так, если это какой-то звуковой сигнал, то аргументом служит время (рисуем). При оцифровке изображения имеем два аргумента: ширина и высота (рисуем). В обоих случаях аргументы разбиваются на равные части.

Квантование – разбиение области существования функции также на равные участки, число которых составляет 2 8 N , где 8 N – разрядность квантования. То есть число участков равно числу возможных сочетаний двоичных цифр в одном, двух, трех и т.д. байтах.

На практике применяются разрядности 1, 2, 3, 4, тогда область существования функции делится на 2 8 = 256, 2 16 = 65 536, 2 24 = 16 777 216, 2 32 = 4 294 967 296 участков. Функций тоже может быть одна и несколько. Например, в черно-белом изображении функция одна – 256 градаций серого цвета. А в модели RGB функций три: по 256 градаций красного, зеленого и синего цвета.

Кодирование – это разбиение сигнала в соответствии с принятыми правилами дискретизации и квантования. Внутри каждого элементарного участка аргумента функция остается постоянной и этому участку присваивается двоичный код по шкале функций, состоящий из 8, 16, 24 и т.д. двоичных цифр.

В результате получается ступенчатая кривая, которая с увеличением разрядности приближается к реальному сигналу. Ступени могут быть меньше, но никогда не превратятся в плавную линию (см. файл «ОцифровкаА1») .

Указанный недостаток, конечно, непреодолим, но в цифровых технологиях можно повысить точность оцифровки до уровня чувствительности измерения аналогового сигнала. И тогда влияние оцифровки сведется к минимуму.

2.3. Кодирование текстовых данных

2.3.1. Системы кодировки текста Имеется две системы кодировки: на основе ascii и Unicode.

В системе кодирования ASCII (American Standard Code for Information Interchange – стандартный код информационного обмена США) каждый символ представлен одним байтом, что позволяет закодировать 256 символов.

В ASCII имеется две таблицы кодирования - базовая и расширенная. Базовая таблица закрепляет значения кодов от 0 до 127, а расширенная относится к символам с номерами от 128 до 255. Этого хватит, чтобы выразить различными комбинациями восьми битов все символы английского и русского языков, как строчные, так и прописные, а также знаки препинания, символы основных арифметических действий и обще­принятые специальные символы, которые можно наблюдать на клавиатуре.

Первые 32 кода базовой таблицы, начиная с нулевого, отданы производителям аппаратных средств (в первую очередь производителям компьютеров и печатаю­щих устройств). В этой области размещаются так называемые управляющие коды, которым не соответствуют никакие символы языков, и, соответственно, эти коды не выводятся ни на экран, ни на устройства печати, но ими можно управлять тем, как производится вывод прочих данных. Начиная с кода 32 по код 127, размещены символы английского алфавита, знаки препинания, цифры, арифметические действия и вспомогательные символы, все их можно видеть на латинской части клавиатуры компьютера.

Вторая, расширенная часть отдана национальным системам кодирования. В мире существует много нелатинских алфавитов (арабский, еврейский, греческий и пр.), в число которых входит и кириллица. Кроме того, немецкая, французская, испанская раскладки клавиатуры отличаются от английской.

В английской части клавиатуры раньше было много стандартов, а теперь все они заменены на единый код ASCII. Для русской клавиатуры тоже существовало много стандартов: ГОСТ, ГОСТ-альтернативная, ISO (International Standard Organization - Между­народный институт стандартизации), но эти три стандарта фактически уже вымерли, хотя и могут где-то встретиться, в каких-то допотопных компьютерах или сетях. 12

Основная кодировка символов русского языка, которая используется в компьютерах с операционной системой Windows называется Windows-1251 , она была разработана для алфавитов кириллицы компанией Microsoft. Естественно, что в Windows-1251 закодировано абсолютное большинство русскоязычных текстов. Кстати кодировки с другим четырехзначным номером разработаны Microsoft для других распространенных алфавитов: Windows-1250 для расширенной латиницы (различные национальные латинские буквы), Windows-1252 для иврита, Windows-1253 для арабской письменности, и т.д.

Другая, менее распространенная кодировка носит название КОИ-8 (код обмена информа­цией, восьмизначный). Ее происхождение относится к 60-м годам XX века. Тогда не существовало персональных компьютеров, сети Интернет, компании Microsoft и многого другого. Но в СССР уже было довольно много ЭВМ, и для них требовалось разработать стандарт кодировки кириллицы.

Сегодня кодировка КОИ-8 имеет распространение в компьютерных сетях на терри­тории бывшего СССР и в русскоязычном секторе Интернета. Бывает так, что какой-то текст письма или еще чего-то не читается, это значит, что надо перейти из КОИ-8 или другой кодировки в Windows-1251.

В 90-х годах крупнейшие производители программного обеспечения: Microsoft, Borland, та же Adobe приняли решение о разработке другой системы кодировки текста, в которой каждому символу будет отводиться не 1, а 2 байта. Она получила название Unicode .

С помощью 2-х байтов можно закодировать 65 536 символов. Этого массива оказалось достаточно для размещения в одной таблице всех национальных алфавитов, существующих на Земле. Кроме того, в Unicode включены много различных служебных обозначений: штрих коды, азбука Морзе, азбука флагов, азбука Брайля (для слепых), знаки валют, геометрические фигуры и многое другое.

Всего Unicode насчитывает более 90 страниц, на каждой расположен какой-либо национальный или служебный алфавит. И еще около 5 тысяч символов занимает так называемая «область общего назначения», незаполненная, оставленная в качестве резерва.

Самую большую страницу (около 70% всего Unicode) занимают китайские иероглифы, которые в Китае набирают с помощью клавиатурных наборов. В одной только Индии имеется 11 различных алфавитов, есть в Unicode множество экзотических названий, например: письменность канадских аборигенов. Вообще рассмотрение национальных письменностей довольно занимательно с точки зрения географии и истории.

Преимущества Unicode очевидны. Система стандартизует все национальные и служебные текстовые символы. Устраняется путаница, возникающая из-за различных национальных стандартов. Создаются даже шрифты для всех алфавитов, например Arial Unicode.

Поскольку на кодирование каждого символа в Unicode отводится не 8, а 16 разрядов, объем текстового файла увеличивается примерно в 2 раза. Когда-то это было препятствием для введения 16-разрядной системы. А сейчас, при современном уровне развития компьютерной техники, увеличение размера текстовых файлов большого значения не имеет. Тексты занимают очень мало места в памяти компьютеров.

Кириллица занимает в Unicode места с 768 по 923 (основные знаки) и с 924 по 1023 (расширенная кириллица, различные малораспространенные национальные буквы). Если программа не адаптирована под кириллицу Unicode, то возможен вариант, когда символы текста распознаются не как кириллица, а как расширенная латиница (коды с 256 по 511). И в этом случае вместо текста на экране появляется бессмысленный набор экзотических символов.

Такое возможно, если программа устаревшая, созданная до 1995 года. Или малораспространенная, о русификации которой никто не позаботился. Еще возможен вариант, когда установленная на компьютере ОС Windows не полностью настроена под кириллицу. В этом случае надо сделать соответствующие записи в реестре.